已知定義在R上的函數(shù)f(x),則命題p:“f(-2)≠f(2)”是命題q:“y=f(x)不是偶函數(shù)”的(  )
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件
考點(diǎn):必要條件、充分條件與充要條件的判斷
專題:簡易邏輯
分析:根據(jù)函數(shù)奇偶性的定義,利用充分條件和必要條件的定義即可得到結(jié)論.
解答: 解:根據(jù)偶函數(shù)的定義可以,若f(-2)≠f(2),則y=f(x)不是偶函數(shù),即充分性成立,
當(dāng)f(x)=
|x|x≥-2
xx<-2
,滿足y=f(x)不是偶函數(shù),此時f(-2)=f(2),即必要性不成立,
則命題p是命題q的充分不必要條件,
故選:A
點(diǎn)評:本題主要考查充分條件和必要條件的判斷,根據(jù)函數(shù)奇偶性的性質(zhì)是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)(3
3x
+1)n的展開式中各項(xiàng)系數(shù)之和為A,各項(xiàng)的二項(xiàng)式系數(shù)之和為B,如A+B=272,則展開式中含x項(xiàng)的系數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

O為坐標(biāo)原點(diǎn),F(xiàn)為拋物線C:y2=4
2
x的焦點(diǎn),P為C上一點(diǎn),若|PF|=4
2
,則△POF的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lgx+x-10的零點(diǎn)在區(qū)間(k,k+1)上,k∈Z,則k=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果對定義在R上的函數(shù)f(x),對任意兩個不相等的實(shí)數(shù)x1,x2,都有x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1),則稱函數(shù)f(x)為“H函數(shù)”.給出下列函數(shù):
①y=ex+x;
②y=x2;
③y=3x-sinx;
④f(x)=
ln|x|
 
 
 
x≠0
0
 
 
 
 
 
 
x=0

以上函數(shù)是“H函數(shù)”的所有序號為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中真命題的個數(shù)為( 。
①?x0∈R,使得sinx+cosx=2.
②銳角△ABC中,恒有tanAtanB>1.
③?x∈R,不等式ax2-ax-1<0成立的充要條件為:-4<a<0.
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}中a3+a9+a15=9,則數(shù)列{an}的前17項(xiàng)和S17=(  )
A、102B、36C、48D、51

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=-x3-ax2+2bx(a,b∈R)在區(qū)間[-1,2]上單調(diào)遞增,則
b
a
的取值范圍是( 。
A、(-∞,-1)∪(2,+∞)
B、(2,+∞)
C、(-∞,-1)
D、(-1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以下說法錯誤的是(  )
A、命題“若x2-3x+2=0,則x=1”的逆否命題為“若x≠1,則x2-3x+2≠0”
B、函數(shù)f(x)=x-sinx(x∈R)有三個零點(diǎn)
C、若p∧q為真命題,則p,q均為真命題
D、若命題p:?x∈R,使得x2+x+1<0,則¬p:?x∈R,x2+x+1≥0

查看答案和解析>>

同步練習(xí)冊答案