分析 利用周長關(guān)系,表示出扇形的面積,利用二次函數(shù)求出面積的最大值,以及圓心角的大。
解答 解:根據(jù)題意知l+2r=20即l=20-2r…(3分)
∵$s=\frac{1}{2}lr$,∴$s=\frac{1}{2}×(20-2r)r=-{(r-5)^2}+25$…(4分)
∴當(dāng)r=5時(shí)smax=25,
又∵l=2r,∴10=α×5即α=2…(11分)
∴扇形的面積的最大值是25,此時(shí)扇形圓心角的弧度數(shù)為2…(13分)
點(diǎn)評 本題主要考查了扇形的周長,半徑圓心角,面積之間的關(guān)系,考查計(jì)算能力,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(-4)<f(0)<f(4) | B. | f(0)<f(-4)<f(4) | C. | f(0)<f(4)<f(-4) | D. | f(4)<f(0)<f(-4) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,0) | B. | $(\frac{{\sqrt{3}}}{2},\frac{3}{4})$ | C. | $(\frac{{\sqrt{3}}}{6},\frac{1}{12})$ | D. | $(\frac{{\sqrt{3}}}{3},\frac{1}{3})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{2}$ | B. | -$\frac{\sqrt{3}}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com