定義在R上的增函數(shù)y=f(x)對任意x,y∈R都有f(x+y)=f(x)+f(y).
(Ⅰ)求f(0)
(Ⅱ)求證f(x)為奇函數(shù);
(Ⅲ)若f()+f(3-9-2)<0對任意x∈R恒成立,求實(shí)數(shù)k的取值范圍.

解:(Ⅰ)令x=y=0,代入①式,得f(0+0)=f(0)+f(0),即 f(0)=0.…2分
(Ⅱ)令y=-x,代入①式,得 f(x-x)=f(x)+f(-x),又f(0)=0,則有
0=f(x)+f(-x).即f(-x)=-f(x)對任意x∈R成立,
所以f(x)是奇函數(shù).           ………………………………6分
(Ⅲ) 因?yàn)閒(x)在R上是增函數(shù),又由(Ⅱ)知f(x)是奇函數(shù).
f()<-f(3-9-2)=f(-3+9+2),  <-3+9+2,
3-(1+k)+2>0對任意x∈R成立. …… …………………8分
令t=3>0,問題等價于t-(1+k)t+2>0對任意t>0恒成立.
,其對稱軸為
………………10
        解得:
綜上所述,當(dāng)時,f()+f(3-9-2)<0對任意x∈R恒成立.

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知偶函數(shù)滿足:當(dāng)時,,
當(dāng)時,
(1) 求當(dāng)時,的表達(dá)式;
(2) 試討論:當(dāng)實(shí)數(shù)滿足什么條件時,函數(shù)有4個零點(diǎn),
且這4個零點(diǎn)從小到大依次構(gòu)成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)探究函數(shù)的最小值,并確定取得最小值時x的值. 列表如下, 請觀察表中y值隨x值變化的特點(diǎn),完成以下的問題.

x

0.25
0.5
0.75
1
1.1
1.2
1.5
2
3
5

y

8.063
4.25
3.229
3
3.028
3.081
3.583
5
9.667
25.4

已知:函數(shù)在區(qū)間(0,1)上遞減,問:
(1)函數(shù)在區(qū)間                  上遞增.當(dāng)               時,                 
(2)函數(shù)在定義域內(nèi)有最大值或最小值嗎?如有,是多少?此時x為何值?(直接回答結(jié)果,不需證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分10分)已知函數(shù)
⑴ 判斷函數(shù)的單調(diào)性,并利用單調(diào)性定義證明;
⑵ 求函數(shù)的最大值和最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)是奇函數(shù),并且函數(shù)的圖像經(jīng)過點(diǎn)
(1)求實(shí)數(shù)的值;   
(2)求函數(shù)的值域;
(3)證明函數(shù)在(0,+上單調(diào)遞減,并寫出的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=是定義在(-1,1)上的奇函數(shù),且f()=.
(1)求函數(shù)f(x)的解析式;
(2)用定義證明f(x)在(-1,1)上是增函數(shù);
(3)解不等式f(t-1)+f(t)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分10分)設(shè)函數(shù)
(1)求它的定義域;(2)判斷它的奇偶性;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)的定義域?yàn)?sub>對定義域內(nèi)的任意、,都有,且當(dāng)。
(1)求證:是偶函數(shù);
(2)求證:上是增函數(shù);
(3)解不等式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,則      

查看答案和解析>>

同步練習(xí)冊答案