A. | (-∞,$\frac{2}{3}$) | B. | (-∞,-1) | C. | (-l,$\frac{2}{3}$) | D. | (-∞,-1)∪($\frac{2}{3}$,+∞) |
分析 利用偶函數(shù)f(x)在[0,+∞)上單調(diào)遞減,滿足$f({3x+\frac{1}{2}})>f(\frac{5}{2})$,可得|3x+$\frac{1}{2}$|<$\frac{5}{2}$,解不等式,即可得出結(jié)論.
解答 解:∵偶函數(shù)f(x)在[0,+∞)上單調(diào)遞減,滿足$f({3x+\frac{1}{2}})>f(\frac{5}{2})$,
∴|3x+$\frac{1}{2}$|<$\frac{5}{2}$,
∴-$\frac{5}{2}$$<3x+\frac{1}{2}<\frac{5}{2}$,
∴-1$<x<\frac{2}{3}$,
故選C.
點評 本題考查偶函數(shù)的性質(zhì),考查學(xué)生解不等式的能力,正確轉(zhuǎn)化是關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 如果一條直線與一個平面內(nèi)的無數(shù)條直線平行,則這條直線與這個平面平行 | |
B. | 兩個平面相交于唯一的公共點 | |
C. | 如果一條直線與一個平面有兩個不同的公共點,則它們必有無數(shù)個公共點 | |
D. | 平面外的一條直線必與該平面內(nèi)無數(shù)條直線平行 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 對稱中心為$(\frac{π}{3},0)$ | |
B. | 函數(shù)y=sin2x向左平移$\frac{5π}{6}$個單位可得到f(x) | |
C. | f(x)在區(qū)間$(-\frac{2π}{3},-\frac{π}{6})$上遞增 | |
D. | 方程f(x)=0在區(qū)間$[-\frac{5π}{6},0]$上有三個零點 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com