已知數(shù)列{an}滿足:a1=1,an=
Sn
+
Sn-1
(n≥2),分別求出S1,S2,S3,S4,通過(guò)歸納猜想得到Sn=(  )
A、2n-1
B、n2
C、n
D、2n
考點(diǎn):歸納推理
專(zhuān)題:推理和證明
分析:根據(jù)數(shù)列{an}滿足:a1=1,an=
Sn
+
Sn-1
(n≥2),分別求出S1,S2,S3,S4,找出Sn隨n值變化而變化的規(guī)律,可得答案.
解答: 解:∵數(shù)列{an}滿足:a1=1,an=
Sn
+
Sn-1
(n≥2),
當(dāng)n=2時(shí),a2=
S2
+
S1
=
a2+1
+
1
,解得a2=3,故S2=4=22
當(dāng)n=3時(shí),a3=
S3
+
S2
=
a3+4
+
4
,解得a3=5,故S3=9=32,
當(dāng)n=4時(shí),a4=
S4
+
S3
=
a4+9
+
9
,解得a4=7,故S4=16=42,

歸納可得:Sn=n2,
故選:B
點(diǎn)評(píng):歸納推理的一般步驟是:(1)通過(guò)觀察個(gè)別情況發(fā)現(xiàn)某些相同性質(zhì);(2)從已知的相同性質(zhì)中推出一個(gè)明確表達(dá)的一般性命題(猜想).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知α∈(-
π
2
,0),cosα=
3
5
,則tanα等于( 。
A、-
4
3
B、-
3
4
C、
4
3
D、
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

知?jiǎng)狱c(diǎn)P(a,b)在區(qū)域
2x-y-4≤0
x-y≥0
y≥0
上運(yùn)動(dòng).
(Ⅰ)若w=
a+b-3
a-1
,求w的范圍
(Ⅱ)求覆蓋此區(qū)域的面積最小的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若直線l1:ax+y+2a=0與l2:x+ay+3=0互相平行,則實(shí)數(shù)a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知cosα=
1
3
,cos(α+β)=-
1
3
,且α、β∈(0,
π
2
),則cos(α-β)=( 。
A、-
10
2
27
B、-
2
2
3
C、
23
27
D、-
9
27

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)由數(shù)字0,1,2,3,4,5組成沒(méi)有重復(fù)數(shù)字的六位數(shù),其中個(gè)位數(shù)字小于十位數(shù)字的共有多少個(gè)?
(2)某高校從某系的10名優(yōu)秀畢業(yè)生中選4人分別到西部四城市參加中國(guó)西部經(jīng)濟(jì)開(kāi)發(fā)建設(shè),其中甲同學(xué)不到銀川,乙不到西寧,共有多少種不同派遣方案?
(3)將5個(gè)不同的小球放入3個(gè)不同的盒子中,要求每一個(gè)盒子至少有一個(gè)小球,共有多少種不同的放法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正項(xiàng)等比數(shù)列{an}中,a2=4,a4=16.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若a3,a5分別是等差數(shù)列{bn}的第3項(xiàng)和第5項(xiàng),求數(shù)列{bn}的通項(xiàng)公式及前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算1+2+3+…+100的值有如下算法:
第一步,令i=1,S=0
第二步,計(jì)算S+i,仍用S表示.
第三步,計(jì)算i+1,仍用i表示
第四步,判斷i>100是否成立,若是,則輸出S,結(jié)束算法;
否則返回第二步.
請(qǐng)利用UNTIL語(yǔ)句寫(xiě)出這個(gè)算法對(duì)應(yīng)的程序.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

7位同學(xué)站成一排,按下列要求,各有多少不同排法,
(1)甲站在某一固定位置;
(2)甲站中間,乙與甲相鄰;
(3)甲、乙相鄰;
(4)甲、乙兩人不相鄰;
(5)甲、乙、丙三人相鄰;
(6)甲、乙、丙三人中任何兩人都不相鄰.

查看答案和解析>>

同步練習(xí)冊(cè)答案