14.已知集合A={0,1},集合B滿足A∪B={0,1},則集合B的個數(shù)有(  )
A.4個B.3個C.2個D.1個

分析 根據(jù)集合B是集合A的子集,求出即可.

解答 解:∵A={0,1},集合B滿足A∪B={0,1},
則集合B可能是:∅,{0},{1},{1,2},
故選:A.

點評 本題考查了集合之間的關系,考查集合的運算,是一道基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

4.二次函數(shù)f(x)=x2-2x-3在[-2,1]上有幾個零點(  )
A.2B.3C.1D.0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.《九章算術》是我國古代內(nèi)容極為豐富的數(shù)學名著,書中有如下命題:“盡有委米依坦內(nèi)角,下周八尺,高五尺,圓周率約為三,問:積為幾何?”其意思為:“在屋內(nèi)墻角處堆放米(如圖,米堆為一個圓錐的四分之一),米堆底部的弧長為8尺,米堆的高為5尺,已知圓周率約為3,問米堆的體積為多少?”( 。
A.$\frac{4096}{9}$B.$\frac{1280}{9}$C.$\frac{320}{9}$D.$\frac{256}{9}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.關于x的不等式x2-2ax-8a2<0(a>0)的解集為(x1,x2),且x2+x1=15,則a的值為( 。
A.$\frac{5}{2}$B.$\frac{7}{2}$C.$\frac{15}{4}$D.$\frac{15}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.將函數(shù)y=sin2x的圖象向右平移φ個單位長度后所得圖象的解析式為$y=sin(2x-\frac{π}{6})$,則φ=$\frac{π}{12}$$(0<φ<\frac{π}{2})$,再將函數(shù)$y=sin(2x-\frac{π}{6})$圖象上各點的橫坐標伸長到原來的2倍(縱坐標不變)后得到的圖象的解析式為y=sin(x-$\frac{π}{6}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.己知雙曲線$\frac{x^2}{m}$+$\frac{y^2}{m-1}$=1,焦點在x軸上.
(1)求m的范圍;
(2)已知雙曲線離心率是$\sqrt{2}$,過雙曲線的右焦點F,作傾角是45°的直線L與該雙曲線交于A點,求原點O到A點的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.若關于x的不等式組$\left\{\begin{array}{l}{{x}^{2}-ax+4>0}\\{a{x}^{2}-x+1>0}\end{array}\right.$對于x∈[1,3]恒成立,則實數(shù)a的取值范圍是($\frac{1}{4}$,4).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.設集合A={1,2},B={1,2,3},分別從集合A和B中隨機取一個數(shù)a和b,確定平面上的一個點P(a,b),記“點P(a,b)落在直線x+y=n(n∈N*)上”為事件Cn,若事件Cn發(fā)生的概率最大,則n的取值為3,4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知(1+2x)n的展開式中第6項與第7項的系數(shù)相等,求:
(1)展開式中二項式系數(shù)最大的項;
(2)展開式中系數(shù)最大的項.

查看答案和解析>>

同步練習冊答案