已知函數(shù)f(x)=
x
ex
(x≥0)
x2+2x(x<0)
,若函數(shù)g(x)=f(x)+k有三個(gè)零點(diǎn),則k的取值范圍是
 
考點(diǎn):函數(shù)零點(diǎn)的判定定理
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用數(shù)形結(jié)合的思想,若函數(shù)g(x)=f(x)+k有三個(gè)零點(diǎn),也就是f(x)=g(x)-k,即y=-k與f(x)有三個(gè)交點(diǎn),只要求出f(x)的最小值即可.
解答: 解:如圖所示,∵f(x)=
x
ex
(x≥0)
f′(x)=
1-x
ex

令f′(x)=0,
則x=1,
當(dāng)0≤x<1時(shí),f′(x)>0,函數(shù)f(x)為單調(diào)遞增函數(shù),
當(dāng)x>1時(shí),f′(x)<0,函數(shù)f(x)為單調(diào)遞減函數(shù),
∴當(dāng)x=1時(shí),函數(shù)f(x)有最大值,最大值為f(1)=
1
e
,
∴-k=
1
e

即k=-
1
e
,
∴k的取值范圍是(-
1
e
,0)
點(diǎn)評(píng):本題考查了函數(shù)零點(diǎn)的問(wèn)題,利用數(shù)形結(jié)合的思想,轉(zhuǎn)化為求函數(shù)的最值問(wèn)題,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

滿足條件|z-i|=|1+
3
i|的復(fù)數(shù)z在復(fù)平面上對(duì)應(yīng)的點(diǎn)(x,y)的軌跡方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

i為虛數(shù)單位,則復(fù)數(shù)
5+10i
3-4i
的虛部是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)的定義域?yàn)镽,若f(0)=0,且任意的x∈R都有:f(
x
3
)=
1
2
f(x)和f(1-x)=1-f(x)成立,則f(
1
3
)+f(
1
6
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

P是雙曲線x2-2y2=2上的一點(diǎn),F(xiàn)1,F(xiàn)2分別是其左右焦點(diǎn),若F1P⊥F2P,則△F1PF2的面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖1是一個(gè)水平擺放的小正方體木塊,圖2、圖3是由這樣的小正方體木塊疊放而成,按照這樣的規(guī)律繼續(xù)逐個(gè)疊放下去,那么在第七個(gè)疊放的圖形中小正方體木塊數(shù)應(yīng)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知α∈(0,
π
4
),a=(sinα)cosα,b=(sinα)sinα,c=(cosα)sinα,則a、b、c的大小關(guān)系是(  )
A、a>b>c
B、c>a>b
C、b>a>c
D、c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,a=2011,b=1,則sinA:sinB等于( 。
A、1:1B、1:2011
C、2011:1D、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某商場(chǎng)根據(jù)以往規(guī)律預(yù)計(jì)某種商品2011年第x月的銷(xiāo)售量f(x)=-3x2+40x(x∈N*,1≤x≤12),該商品的進(jìn)價(jià)q(x)與月份x的關(guān)系是q(x)=150+2x(x∈N*,1≤x≤12),該商品每件的售價(jià)為185元,若不考慮其它因素,則此商場(chǎng)今年銷(xiāo)售該商品的月利潤(rùn)預(yù)計(jì)最大是( 。
A、3120元
B、3125元
C、2417元
D、2416元

查看答案和解析>>

同步練習(xí)冊(cè)答案