精英家教網 > 高中數學 > 題目詳情

已知橢圓的離心率為,雙曲線的漸近線與橢圓有四個交點,以這四個交點為頂點的四邊形的面積為16,則橢圓的方程為(   )

A.      B.      C.      D.

 

【答案】

D

【解析】

試題分析:由題意,雙曲線x2-y2=1的漸近線方程為y=±x,根據以這四個交點為頂點的四邊形的面積為16,可得(2,2)在橢圓C:利用e= ,即可求得橢圓方程.解:由題意,雙曲線x2-y2=1的漸近線方程為y=±x,∵以這四個交點為頂點的四邊形的面積為16,故邊長為4,,∴(2,2)在橢圓C:上,∴∵e=,∴∴a2=4b2∴a2=20,b2=5,∴橢圓方程為:,故選D.

考點:雙曲線的性質

點評:本題考查雙曲線的性質,考查橢圓的標準方程與性質,正確運用雙曲線的性質是關鍵.

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網已知橢圓E的離心率為e,兩焦點為F1,F2,拋物線C以F1為頂點,F2為焦點,P為兩曲線的一個公共點,若
|PF1|
|PF2|
=e,則e的值為( 。
A、
3
3
B、
3
2
C、
2
2
D、
6
3

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網如圖,在平面直角坐標系xOy中,橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的左焦點為F,右頂點為A,動點M為右準線上一點(異于右準線與x軸的交點),設線段FM交橢圓C于點P,已知橢圓C的離心率為
2
3
,點M的橫坐標為
9
2

(1)求橢圓C的標準方程;
(2)設直線PA的斜率為k1,直線MA的斜率為k2,求k1•k2的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓E的離心率為e,兩焦點為F1、F2,拋物線C以F1為頂點,F2為焦點,P為兩曲線的一個交點,若
|PF1|
|PF2|
=e,則e的值為
3
3
3
3

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓C的離心率為e=
6
3
,一條準線方程為x=
3
2
2

(1)求橢圓C的標準方程;
(2)設動點P滿足:
OP
=
OM
+
ON
,其中M,N是橢圓上的點,直線OM與ON的斜率之積為-
1
3
,問:是否存在兩個定點A,B,使得|PA|+|PB|為定值?若存在,求A,B的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(A題) (奧賽班做)已知橢圓E的離心率為e,左右焦點分別為F1、F2,拋物線C以F1頂點,F2為焦點,P為兩曲線的一個交點,
|PF1|
|PF2|
=e
,則e的值為
3
3
3
3

查看答案和解析>>

同步練習冊答案