14.若函數(shù)滿足f(x)=-f(x+2),則與f(100)一定相等的是( 。
A.f(1)B.f(2)C.f(3)D.f(4)

分析 求出函數(shù)f(x)的周期,根據(jù)函數(shù)的周期性判斷即可.

解答 解:∵f(x)=-f(x+2)=f(x+4),
∴f(x)是以4為周期的函數(shù),
故f(100)=f(25×4)=f(4),
故選:D.

點評 本題考查了函數(shù)周期性的應用,求出函數(shù)f(x)的周期是解題的關鍵,本題是一道基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

4.已知集合A={-1,0,1},$B=\left\{x\right.|\frac{x+1}{x-1}\left.{<0}\right\}$,則A∩B={0}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知p:-2≤x≤1,q:(x-a)(x-a-4)>0,若p是q成立的充分不必要條件,則實數(shù)a的取值范圍是(-∞,-6)∪(1,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.設全集U=R,集合$A=\{x\left|{y=\sqrt{x}}\right.\},B=\{y\left|{y={{log}_2}(x-\frac{1}{2}),x∈[1,\frac{9}{2}]}\right.\}$,則(∁UA)∩B=( 。
A.B.[-1,0)C.$[1,\frac{9}{2}]$D.[0,2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.化簡求值.
(1)${(\frac{1}{4})^{-2}}+{({\frac{1}{{6\sqrt{6}}}})^{{-^{\;}}\frac{1}{3}}}+\frac{{\sqrt{3}+\sqrt{2}}}{{\sqrt{3}-\sqrt{2}}}+\frac{1}{2}•{(1.03)^0}•{(-\sqrt{6})^3}$
(2)(lg2)2+lg20×lg5+log92•log43.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.(1)設橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$過點(0,4),離心率為$\frac{3}{5}$,求C的標準方程;
(2)已知拋物線的準線方程是y=-2,求拋物線的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.設橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$ 的左右焦點分別為F1,F(xiàn)2,點P 在橢圓上運動,$|{{{\overrightarrow{PF}}_1}}|×|{\overrightarrow{P{F_2}}}|$ 的最大值為m,$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$的最小值為n,且m≥2n,則該橢圓的離心率的取值范圍為[$\frac{1}{2}$,1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知等邊三角形的邊長為a,P是△ABC所在平面上的一點,求|PA|2+|PB|2+|PC|2的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知橢圓具有性質(zhì):若M、N是橢圓上關于原點對稱的兩個點,點P是橢圓上的任意一點,當直線PM、PN的斜率都存在,并記為kPM,kPN時,那么kPM與kPN之積是與P點無關的定值.現(xiàn)將橢圓改為雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0),且kPM<0、kPN<0,則kPM+kPN的最大值為(  )
A.$-\frac{2b}{a}$B.$-\frac{2a}$C.$-\frac{{\sqrt{2}b}}{a}$D.$-\frac{{\sqrt{2}b}}{a}$

查看答案和解析>>

同步練習冊答案