分析 (1)直接標(biāo)出點(diǎn)F,G,H的位置.
(2)先證BCHE為平行四邊形,可知BE∥平面ACH,同理可證BG∥平面ACH,即可證明平面BEG∥平面ACH.
(3)連接FH,由DH⊥EG,又DH⊥EG,EG⊥FH,可證EG⊥平面BFHD,從而可證DF⊥EG,同理DF⊥BG,即可證明DF⊥平面BEG.
解答 解:(1)點(diǎn)F,G,H的位置如圖所示.
(2)平面BEG∥平面ACH,證明如下:
∵ABCD-EFGH為正方體,
∴BC∥FG,BC=FG,
又FG∥EH,F(xiàn)G=EH,
∴BC∥EH,BC=EH,
∴BCHE為平行四邊形.
∴BE∥CH,
又CH?平面ACH,BE?平面ACH,
∴BE∥平面ACH,
同理BG∥平面ACH,
又BE∩BG=B,
∴平面BEG∥平面ACH.
(3)連接FH,
∵ABCD-EFGH為正方體,
∴DH⊥EG,
又∵EG?平面EFGH,
∴DH⊥EG,
又EG⊥FH,EG∩FH=O,
∴EG⊥平面BFHD,
又DF?平面BFHD,
∴DF⊥EG,
同理DF⊥BG,
又∵EG∩BG=G,
∴DF⊥平面BEG.
點(diǎn)評(píng) 本題主要考查了簡(jiǎn)單空間圖形的直觀圖、空間線面平行與垂直的判定與性質(zhì)等基礎(chǔ)知識(shí),考查了空間想象能力和推理論證能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①②③ | B. | ①③④ | C. | ②④ | D. | ②③ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 變大了 | B. | 變小了 | C. | 相等 | D. | 不確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 37 | B. | 38 | C. | 39 | D. | 40 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-3,1,5) | B. | (3,-1,-5) | C. | (3,-1,-5) | D. | (-3,1,-5) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{5π}{6}$ | C. | $\frac{π}{3}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com