求證:a2+b2+c2≥ab+bc+ca.
【答案】分析:從不等式的左邊入手,左邊對應的代數(shù)式的二倍,分別寫成兩兩相加的形式,在三組相加的式子中分別用均值不等式,整理成最簡形式,得到右邊的2倍,兩邊同時除以2,得到結果.
解答:證明:a2+b2+c2
=(a2+b2+c2+a2+b2+c2
(2ab+2ca+2bc)=ab+bc+ca.
∴a2+b2+c2≥ab+bc+ca.
點評:本題考查均值不等式的應用,考查不等式的證明方法,是一個基礎題,這種題目常?紤]分拆后利用基本不等式,因為題目分拆后才符合均值不等式的表現(xiàn)形式.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知:在△ABC中,AB=c,BC=a,AC=b,AB上的中線CD=m,求證:a2+b2=
12
c2+2m2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

例2.求證:
a2+b2
+
b2+c2
+
c2+a2
2
(a+b+c)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

通常用a、b、c分別表示△ABC的三個內角A,B,C所對邊的邊長,R表示△ABC的外接圓半徑.
(1)如圖,在以O為圓心、直徑為8的⊙O中,BC和BA是⊙O的弦,其中BC=4,∠ABC=45°,求弦AB的長;
(2)在△ABC中,若∠C是鈍角,求證:a2+b2<4R2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(一)已知a,b,c∈R+
①求證:a2+b2+c2≥ab+bc+ac;
②若a+b+c=1,利用①的結論求ab+bc+ac的最大值.
(二)已知a,b,x,y∈R+,
①求證:
x2
a
+
y2
b
(x+y)2
a+b

②利用①的結論求
1
2x
+
9
1-2x
(0<x<
1
2
)
的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知實數(shù)a、b、c滿足ab+bc+ca=1,求證:a2+b2+c2≥1.

查看答案和解析>>

同步練習冊答案