函數(shù)y=2tan(3x-
π
4
)的一個對稱中心是( 。
A、(
π
3
,0)
B、(
π
6
,0)
C、(-
π
12
,0)
D、(-
π
2
,0)
考點:正切函數(shù)的圖象
專題:計算題,三角函數(shù)的圖像與性質(zhì)
分析:對稱中心就是圖象與x軸的交點,令 3x-
π
4
=
2
,k∈z,解得對稱中心為(
6
+
π
12
,0 ),從而得到答案.
解答: 解:∵函數(shù)y=2tan(3x-
π
4
),令 3x-
π
4
=
2
,k∈z,
可得x=
6
+
π
12
,k∈z,故對稱中心為(
6
+
π
12
,0 ),
令k=-1,可得一個對稱中心是(-
π
12
,0),
故選C.
點評:本題考查正切函數(shù)的對稱中心的求法,得到3x-
π
4
=
2
,k∈z是解題的關(guān)鍵,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

log23×log34×log48=(  )
A、3
B、2
C、
1
2
D、
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)
a
,
b
是兩個非零向量,有以下四個說法:
①若
a
b
,則向量
a
b
方向上的投影為|
a
|;
②若
a
b
<0,則向量
a
b
的夾角為鈍角;
③若|
a
+
b
|=|
a
|-|
b
|,則存在實數(shù)λ,使得
b
a
;
④若存在實數(shù)λ,使得
b
a
,則|
a
+
b
|=|
a
|-|
b
|.
其中正確的說法個數(shù)有(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若隨機變量X的分布列如下表,且EX=6.3,則表中a的值為( 。
X4a9
P0.50.1b
A、5B、6C、7D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

分別在兩個平行平面內(nèi)的兩條直線的位置關(guān)系是(  )
A、異面B、平行
C、相交D、可能共面,也可能異面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
tan2x
tanx
的定義域為( 。
A、{x|x∈R且x≠
4
,k∈Z}
B、{x|x∈R且x≠kπ+
π
2
,k∈Z}
C、{x|x∈R且x≠kπ+
π
4
,k∈Z}
D、{x|x∈R且x≠kπ-
4
,k∈Z}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}中,a1=-25,前n項和為Sn,S3=S8,則Sn的最小值為( 。
A、-80B、-76
C、-75D、-74

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若正項等比數(shù)列{an}中,a5=a3
2
0
(2x+
1
2
)dx,則q=(  )
A、5
B、
5
C、3
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2
sinωx•cos(ωx+
π
4
)+2sin2ωx+
1
2
,直線y=1-
2
2
與f(x)的圖象交點之間的最短距離為π.
(Ⅰ)求f(x)的解析式及其圖象的對稱中心;
(Ⅱ)設(shè)△ABC的內(nèi)角A、B、C的對邊分別為a、b、c,若∠A是銳角,且f(
A
2
+
π
8
)=
3
2
,c=4,a+b=4
2
,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案