【題目】已知函數(shù).
(1)討論的單調(diào)性;
(2)當(dāng)時(shí),記在區(qū)間的最大值為,最小值為,求的取值范圍.
【答案】(1)見詳解;(2) .
【解析】
(1)先求的導(dǎo)數(shù),再根據(jù)的范圍分情況討論函數(shù)單調(diào)性;(2) 討論的范圍,利用函數(shù)單調(diào)性進(jìn)行最大值和最小值的判斷,最終求得的取值范圍.
(1)對求導(dǎo)得.所以有
當(dāng)時(shí),區(qū)間上單調(diào)遞增,區(qū)間上單調(diào)遞減,區(qū)間上單調(diào)遞增;
當(dāng)時(shí),區(qū)間上單調(diào)遞增;
當(dāng)時(shí),區(qū)間上單調(diào)遞增,區(qū)間上單調(diào)遞減,區(qū)間上單調(diào)遞增.
(2)
若,在區(qū)間單調(diào)遞減,在區(qū)間單調(diào)遞增,所以區(qū)間上最小值為.而,故所以區(qū)間上最大值為.
所以,設(shè)函數(shù),求導(dǎo)當(dāng)時(shí)從而單調(diào)遞減.而,所以.即的取值范圍是.
若,在區(qū)間單調(diào)遞減,在區(qū)間單調(diào)遞增,所以區(qū)間上最小值為而,故所以區(qū)間上最大值為.
所以,而,所以.即的取值范圍是.
綜上得的取值范圍是.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左焦點(diǎn)為F,短軸的兩個(gè)端點(diǎn)分別為A,B,且,為等邊三角形.
(1)求橢圓C的方程;
(2)如圖,點(diǎn)M在橢圓C上且位于第一象限內(nèi),它關(guān)于坐標(biāo)原點(diǎn)O的對稱點(diǎn)為N;過點(diǎn)M作x軸的垂線,垂足為H,直線與橢圓C交于另一點(diǎn)J,若,試求以線段為直徑的圓的方程;
(3)已知是過點(diǎn)A的兩條互相垂直的直線,直線與圓相交于P,Q兩點(diǎn),直線與橢圓C交于另一點(diǎn)R,求面積最大值時(shí),直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)和函數(shù),
(1)若為偶函數(shù),試判斷的奇偶性;
(2)若方程有兩個(gè)不等的實(shí)根,則
①試判斷函數(shù)在區(qū)間上是否具有單調(diào)性,并說明理由;
②若方程的兩實(shí)根為求使成立的的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 是奇函數(shù).
(1)求實(shí)數(shù)的值;
(2)判斷函數(shù)在上的單調(diào)性,并給出證明;
(3)當(dāng)時(shí),函數(shù)的值域是,求實(shí)數(shù)與的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】第七屆世界軍人運(yùn)動(dòng)會(huì)于2019年10月18日至2019年10月27日在中國武漢舉行,第七屆世界軍人運(yùn)動(dòng)會(huì)是我國第一次承辦的綜合性國際軍事體育賽事,也是繼北京奧運(yùn)會(huì)之后我國舉辦的規(guī)模最大的國際體育盛會(huì).來自109個(gè)國家的9300余名軍體健兒在江城武漢同場競技、增進(jìn)友誼.運(yùn)動(dòng)會(huì)共設(shè)置射擊、游泳、田徑、籃球等27個(gè)大項(xiàng)、329個(gè)小項(xiàng).經(jīng)過激烈角逐,獎(jiǎng)牌榜的前6名如下:
某大學(xué)德語系同學(xué)利用分層抽樣的方式從德國獲獎(jiǎng)選手中抽取了9名獲獎(jiǎng)代表.
(1)請問這9名獲獎(jiǎng)代表中獲金牌、銀牌、銅牌的人數(shù)分別是多少人?
(2)從這9人中隨機(jī)抽取3人,記這3人中銀牌選手的人數(shù)為,求的分布列和期望;
(3)從這9人中隨機(jī)抽取3人,求已知這3人中有獲金牌運(yùn)動(dòng)員的前提下,這3人中恰好有1人為獲銅牌運(yùn)動(dòng)員的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】的內(nèi)切圓與三邊的切點(diǎn)分別為,已知,內(nèi)切圓圓心,設(shè)點(diǎn)A的軌跡為R.
(1)求R的方程;
(2)過點(diǎn)C的動(dòng)直線m交曲線R于不同的兩點(diǎn)M,N,問在x軸上是否存在一定點(diǎn)Q(Q不與C重合),使恒成立,若求出Q點(diǎn)的坐標(biāo),若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱ABC-中,平面ABC,D,E,F,G分別為,AC,,的中點(diǎn),AB=BC=,AC==2.
(Ⅰ)求證:AC⊥平面BEF;
(Ⅱ)求二面角B-CD-C1的余弦值;
(Ⅲ)證明:直線FG與平面BCD相交.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足:a1=1,,記.
(1)求b1,b2的值;
(2)證明:數(shù)列{bn}是等比數(shù)列;
(3)求數(shù)列{an}的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)新研發(fā)了一種產(chǎn)品,產(chǎn)品的成本由原料成本及非原料成本組成.每件產(chǎn)品的非原料成本(元)與生產(chǎn)該產(chǎn)品的數(shù)量(千件)有關(guān),經(jīng)統(tǒng)計(jì)得到如下數(shù)據(jù):
根據(jù)以上數(shù)據(jù),繪制了散點(diǎn)圖.
觀察散點(diǎn)圖,兩個(gè)變量不具有線性相關(guān)關(guān)系,現(xiàn)考慮用反比例函數(shù)模型和指數(shù)函數(shù)模型分別對兩個(gè)變量的關(guān)系進(jìn)行擬合.已求得用指數(shù)函數(shù)模型擬合的回歸方程為,與的相關(guān)系數(shù).參考數(shù)據(jù)(其中):
(1)用反比例函數(shù)模型求關(guān)于的回歸方程;
(2)用相關(guān)系數(shù)判斷上述兩個(gè)模型哪一個(gè)擬合效果更好(精確到0.01),并用其估計(jì)產(chǎn)量為10千件時(shí)每件產(chǎn)品的非原料成本;
(3)該企業(yè)采取訂單生產(chǎn)模式(根據(jù)訂單數(shù)量進(jìn)行生產(chǎn),即產(chǎn)品全部售出).根據(jù)市場調(diào)研數(shù)據(jù),若該產(chǎn)品單價(jià)定為100元,則簽訂9千件訂單的概率為0.8,簽訂10千件訂單的概率為0.2;若單價(jià)定為90元,則簽訂10千件訂單的概率為0.3,簽訂11千件訂單的概率為0.7.已知每件產(chǎn)品的原料成本為10元,根據(jù)(2)的結(jié)果,企業(yè)要想獲得更高利潤,產(chǎn)品單價(jià)應(yīng)選擇100元還是90元,請說明理由.
參考公式:對于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為:,,相關(guān)系數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com