5.如圖,在四棱錐P-ABCD中,PA⊥面ABCD,PA=BC=4,AD=2,AC=AB=3,AD∥BC,N是PC的中點(diǎn).
(Ⅰ)證明:ND∥面PAB;
(Ⅱ)求AN與面PND所成角的正弦值.

分析 (Ⅰ)取PB中點(diǎn)M,連結(jié)AM,MN,證明:四邊形AMND是平行四邊形,得出ND∥AM,即可證明ND∥面PAB;
(Ⅱ)在面PAD內(nèi)過(guò)A做AF⊥PD于F,則CD⊥AF,又CD∩PD=D,AF⊥面PDC,連接NF,則∠ANF是AN與面PND所成的角,即可求AN與面PND所成角的正弦值.

解答 (Ⅰ)證明:如圖,取PB中點(diǎn)M,連結(jié)AM,MN.
∵M(jìn)N是△BCP的中位線,∴MN平行且等于$\frac{1}{2}$BC.    (1分)
依題意得,AD平行且等于$\frac{1}{2}$BC,則有AD平行且等于MN(2分)
∴四邊形AMND是平行四邊形,∴ND∥AM(3分)
∵ND?面PAB,AM?面PAB,∴ND∥面PAB(5分)
(Ⅱ)解:取BC的中點(diǎn)E,則$AD\underline{\underline{∥}}CE$,所以四邊形AECD是平行四邊形,
所以CD∥AE,又因?yàn)锳B=AC,所以AE⊥BC,所以CD⊥BC,
又BC∥AD,所以CD⊥AD(6分)

PA⊥面ABCD,CD?面ABCD,所以PA⊥CD(7分)
又PA∩AD=A,所以CD⊥面PAD.(8分)
在面PAD內(nèi)過(guò)A做AF⊥PD于F,則CD⊥AF,又CD∩PD=D,AF⊥面PDC,連接NF,則∠ANF是AN與面PND所成的角.(10分)
在Rt△ANF中,$AN=\frac{1}{2}PC=\frac{5}{2}$,$AF=\frac{4×2}{{\sqrt{16+4}}}=\frac{{4\sqrt{5}}}{5}$,$sin∠ANF=\frac{AF}{AN}=\frac{{8\sqrt{5}}}{25}$,
所以AN與面PND所成角的正弦值為$\frac{{8\sqrt{5}}}{25}$(12分)

點(diǎn)評(píng) 本題考查線面平行的證明,考查線面角,考查學(xué)生分析解決問(wèn)題的能力,正確作出線面角是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.橢圓$\frac{x^2}{2}+\frac{y^2}{4}=2$的焦距為(  )
A.2B.$2\sqrt{2}$C.4D.$4\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知ax+by≤a-x+b-y(1<a<b),則(  )
A.x+y≥0B.x+y≤0C.x-y≤0D.x-y≥0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知數(shù)列{an}滿足a1=$\frac{1}{2}$,an+1=3an+1,數(shù)列{an}的前n項(xiàng)和為Sn,則S2016=( 。
A.$\frac{{3}^{2015}-2016}{2}$B.$\frac{{3}^{2016}-2016}{2}$C.$\frac{{3}^{2015}-2017}{2}$D.$\frac{{3}^{2016}-2017}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知f(x)是定義在R上的增函數(shù),函數(shù)y=f(x-1)的圖象關(guān)于點(diǎn)(1,0)對(duì)稱,若實(shí)數(shù)m,n滿足等式$f(n-3)+f(\sqrt{4m-{m^2}-3})=0$,則$\frac{n}{m}$的取值范圍是(  )
A.$[2-\frac{{2\sqrt{3}}}{3},2+\frac{{2\sqrt{3}}}{3}]$B.$[1,2+\frac{{2\sqrt{3}}}{3}]$C.$[2-\frac{{2\sqrt{3}}}{3},3]$D.[1,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.函數(shù)f(x)=(m2-m-1)xm是冪函數(shù),且在x∈(0,+∞)上為增函數(shù),則實(shí)數(shù)m的值為( 。
A.m=-1或m=2B.m=2C.m=-1D.m=-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.若y=f(x)的圖象上每一點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來(lái)的2倍(縱坐標(biāo)不變),然后把圖象向左平移$\frac{π}{2}$個(gè)單位,再把圖象上所有點(diǎn)的縱坐標(biāo)縮短到原來(lái)的$\frac{1}{2}$倍(橫坐標(biāo)不變),這樣得到的圖象與y=sinx的圖象相同,則f(x)等于( 。
A.$\frac{1}{2}$sin($\frac{x}{2}$-$\frac{π}{2}$)B.2sin($\frac{x}{2}$-$\frac{π}{2}$)C.$\frac{1}{2}$sin(2x-$\frac{π}{2}$)D.2sin(2x-$\frac{π}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.某電視競(jìng)賽截面設(shè)置了先后三道程序,優(yōu)、良、中,若選手在某道程序中獲得“中”,則該選手在本道程序中不通過(guò),且不能進(jìn)入下面的程序,選手只有全部通過(guò)三道程序才算通過(guò),某選手甲參加了該競(jìng)賽節(jié)目,已知甲在每道程序中通過(guò)的概率為$\frac{3}{4}$,每道程序中得優(yōu)、良、中的概率分別為p1,$\frac{1}{2}$,p2
(1)求甲不能通過(guò)的概率;
(2)設(shè)ξ為在三道程序中獲優(yōu)的次數(shù),求ξ的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.復(fù)數(shù)$z=\frac{3+7i}{i}$的實(shí)部與虛部分別為( 。
A.7,-3B.7,-3iC.-7,3D.-7,3i

查看答案和解析>>

同步練習(xí)冊(cè)答案