設(shè)以向量數(shù)學(xué)公式為方向向量的直線與橢圓數(shù)學(xué)公式交于不同的兩點(diǎn)P、Q.若點(diǎn)P、Q在x軸上的射影恰好為橢圓的兩個(gè)焦點(diǎn),則該橢圓的離心率為________.


分析:確定兩個(gè)交點(diǎn)坐標(biāo),代入橢圓方程,化簡可得結(jié)論.
解答:由題意,兩個(gè)交點(diǎn)橫坐標(biāo)是-c,c,所以兩個(gè)交點(diǎn)分別為(-c,-),(c,
代入橢圓方程可得,兩邊乘2a2b2
∴c2(2b2+a2)=2a2b2
∵b2=a2-c2
∴c2(3a2-2c2)=2a4-2a2c2
∴2a4-5a2c2+2c4=0
∴(2a2-c2)(a2-2c2)=0
=2,或=
∵0<e<1
∴e==
故答案為:
點(diǎn)評:本題主要考查了橢圓的簡單性質(zhì),解題的關(guān)鍵是確定橢圓方程中a,b和c的關(guān)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年河南省原名校高三下學(xué)期第二次聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題

若橢圓的左、右焦點(diǎn)分別為F1,F(xiàn)2,橢圓的離心率為:2.(1)過點(diǎn)C(-1,0)且以向量為方向向量的直線交橢圓于不同兩點(diǎn)A、B,若,則當(dāng)△OAB的面積最大時(shí),求橢圓的方程。

(2)設(shè)M,N為橢圓上的兩個(gè)動點(diǎn),,過原點(diǎn)O作直線MN的垂線OD,垂足為D,求點(diǎn)D的軌跡方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年安徽省高三第五次模擬考試文科數(shù)學(xué)試卷 題型:解答題

已知以向量為方向向量的直線過點(diǎn),拋物線C的頂點(diǎn)關(guān)于直線的對稱點(diǎn)在該拋物線的準(zhǔn)線上.

(Ⅰ)求拋物線C的方程;

(Ⅱ)設(shè)A、B是拋物線C上兩個(gè)動點(diǎn),過A作平行于x軸的直線m,直線OB與直線m交于點(diǎn)N,若 (O為原點(diǎn),A、B異于原點(diǎn)),試求點(diǎn)N的軌跡方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年寧夏石嘴山市光明中學(xué)高二(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知以向量為方向向量的直線l過點(diǎn),拋物線C:y2=2px(p>0)的頂點(diǎn)關(guān)于直線l的對稱點(diǎn)在該拋物線的準(zhǔn)線上.
(Ⅰ)求拋物線C的方程;
(Ⅱ)設(shè)A、B是拋物線C上兩個(gè)動點(diǎn),過A作平行于x軸的直線m,直線OB與直線m交于點(diǎn)N,若(O為原點(diǎn),A、B異于原點(diǎn)),試求點(diǎn)N的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年安徽師大附中高考數(shù)學(xué)五模試卷(文科)(解析版) 題型:解答題

已知以向量為方向向量的直線l過點(diǎn),拋物線C:y2=2px(p>0)的頂點(diǎn)關(guān)于直線l的對稱點(diǎn)在該拋物線的準(zhǔn)線上.
(Ⅰ)求拋物線C的方程;
(Ⅱ)設(shè)A、B是拋物線C上兩個(gè)動點(diǎn),過A作平行于x軸的直線m,直線OB與直線m交于點(diǎn)N,若(O為原點(diǎn),A、B異于原點(diǎn)),試求點(diǎn)N的軌跡方程.

查看答案和解析>>

同步練習(xí)冊答案