1.已知點A、B、C為直線l上不同的三點,點O∉l,實數(shù)x滿足關(guān)系式x2$\overrightarrow{OA}$+2x$\overrightarrow{OB}$+$\overrightarrow{OC}$=0,則下列結(jié)論中正確的個數(shù)有( 。
①$\overrightarrow{OB}$2-$\overrightarrow{OA}$•$\overrightarrow{OC}$≥0           ②$\overrightarrow{OB}$2-$\overrightarrow{OA}$•$\overrightarrow{OC}$<0
③x的值有且只有一個    ④x的值有兩個        
 ⑤點B是線段AC的中點.
A.1個B.2個C.3個D.4個

分析 利用平面向量基本定理對已知向量等式變形分析由存在實數(shù)x滿足式x2$\overrightarrow{OA}$+2x$\overrightarrow{OB}$+$\overrightarrow{OC}$=0,得到△≥0,得出①正確、②錯誤;
同時得到得出式$\overrightarrow{OC}$=-x2$\overrightarrow{OA}$-2x$\overrightarrow{OB}$,根據(jù)平面向量的基本定理,得出-x2-2x=1,判斷③正確、④錯誤;
由式$\overrightarrow{OB}$=$\frac{1}{2}$($\overrightarrow{OA}$+$\overrightarrow{OC}$),得出B是線段AC的中點,判斷⑤正確.

解答 解:對于①,由存在實數(shù)x滿足式x2$\overrightarrow{OA}$+2x$\overrightarrow{OB}$+$\overrightarrow{OC}$=0,△≥0,得出①正確、②錯誤;
由式x2$\overrightarrow{OA}$+2x$\overrightarrow{OB}$+$\overrightarrow{OC}$=0,得出式$\overrightarrow{OC}$=-x2$\overrightarrow{OA}$-2x$\overrightarrow{OB}$,根據(jù)平面向量的基本定理,得出-x2-2x=1,判斷③正確、④錯誤;
由式$\overrightarrow{OB}$=$\frac{1}{2}$($\overrightarrow{OA}$+$\overrightarrow{OC}$),得出B是線段AC的中點,判斷⑤正確.
所以正確結(jié)論為③⑤.
故選:B.

點評 本題考查了平面向量的應(yīng)用問題,也考查了一元二次方程有實數(shù)根的應(yīng)用問題,是綜合性題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=t}\\{y=\frac{\sqrt{2}}{2}+\sqrt{3}t}\end{array}\right.$ (t為參數(shù)),若以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,得曲線C的極坐標方程為ρ=2cos(θ-$\frac{π}{4}$).
(1)求直線l的傾斜角和曲線C的直角坐標方程;
(2)若直線l與曲線C交于A,B兩點,設(shè)點P(0,$\frac{\sqrt{2}}{2}$),求|PA|+|PB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=$\frac{1}{2}$x2+(a-3)x+lnx.
(1)若函數(shù)f(x)在定義域上是單調(diào)增函數(shù),求a的最小值;
(2)若方程f(x)-($\frac{1}{2}$+a)x2-(a-4)x=0在區(qū)間[$\frac{1}{e}$,e]上有兩個不同的實根,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在△ABC中,b=3,c=6,B=45°,則此三角形解的情況是( 。
A.一解B.兩解C.一解或兩解D.無解

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若函數(shù)y=tanθ+$\frac{cos2θ+1}{sin2θ}$(0<θ<$\frac{π}{2}$),則函數(shù)y的最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)是定義域為(0,+∞)的單調(diào)函數(shù),若對任意的x∈(0,+∞),都有f[f(x)-$\frac{1}{x}$]=2,則f(2016)=(  )
A.$\frac{1}{2016}$B.$\frac{2015}{2016}$C.$\frac{2017}{2016}$D.$\frac{4033}{2016}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若$sinx-sin(\frac{3π}{2}-x)=\sqrt{2}$,則$tanx+tan(\frac{3π}{2}-x)$的值是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列函數(shù)中既是奇函數(shù),又在區(qū)間(0,+∞)內(nèi)是增函數(shù)的為( 。
A.y=sinx,x∈RB.y=ln|x|,x∈R,且x≠0C.$y=-\frac{1}{x}$,x∈RD.y=x3+1,x∈R

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.給出下列語句:其中正確的個數(shù)是( 。
①一個平面長3m,寬2m; 
②平面內(nèi)有無數(shù)個點,平面可以看成點的集合;
③空間圖形是由空間的點、線、面所構(gòu)成的.
A.1B.2C.3D.0

查看答案和解析>>

同步練習(xí)冊答案