考點:函數(shù)恒成立問題
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:易判斷函數(shù)f(x)為偶函數(shù)及在(0,+∞)上遞增,在(-∞,0)上遞減,①②可舉反例排除;③④由奇偶性、單調(diào)性可判斷.
解答:
解:∵f(-x)=f(x),∴函數(shù)f(x)=x2+2|x|是偶函數(shù),
當(dāng)x>0時,f(x)=x2+2x單調(diào)遞增,
∴可知函數(shù)f(x)在(0,+∞)上是增函數(shù),
又f(x)為偶函數(shù),∴f(x)在(-∞,0)上是減函數(shù),
①若x1=1,x2=2,則x1+x2>0,
由f(x)在(0,+∞)上是增函數(shù),知f(x1)<f(x2),故①錯誤;
②若x1=-1,x2=-2,則x1+x2<0,
由f(x)在(-∞,0)上是減函數(shù),知f(x1)<f(x2),故②錯誤;|
③由x12>x22可得|x1|>|x2|≥0,
由函數(shù)在(0,+∞)是增函數(shù),得f(|x1|)>f(|x2|),即f(x1)>f(x2),故③正確;
④x1>|x2|≥0,由函數(shù)在(0,+∞)是增函數(shù),得f(|x1|)>f(|x2|),即f(x1)>f(x2),故④正確;
故答案為:③④.
點評:本題考查函數(shù)的奇偶性、單調(diào)性及其綜合應(yīng)用,考查恒成立問題,考查學(xué)生推理論證能力,屬中檔題.