已知定義在R上的偶函數(shù),x≤0時,f(x)=-x-6,當(dāng)x>0時,求f(x)的表達(dá)式.
考點:函數(shù)解析式的求解及常用方法
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用
分析:由f(x)是定義在R上的偶函數(shù)可得f(x)=f(-x),從而求表達(dá)式.
解答: 解:∵f(x)是定義在R上的偶函數(shù),
∴f(x)=f(-x),
當(dāng)x>0時,-x<0,
f(x)=f(-x)=-(-x)-6=x-6,
即當(dāng)x>0時,f(x)=x-6.
點評:本題考查了奇偶函數(shù)的解析式的求法,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知
x-3
+
3-x
+|x-y+2010|+z2+4z+4=0,則x+y+z=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lg[(a2-1)x2+(a+1)x+1],設(shè)命題p:“f(x)的定義域為R”;命題q:“f(x)的值域是R”.
(1)若命題p為真,求實數(shù)a的取值范圍;
(2)若命題p為假,命題q為真時,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是一次函數(shù),且f(f(x))=9x+4
(1)求f(x)的解析式;
(2)若g(x)=x2+2,求g(f(2))的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x)=|x+1|+|x-1|,下列敘述正確的是(  )
A、是奇函數(shù)且最小值是2
B、是偶函數(shù)且最小值是2
C、是奇函數(shù)且無最小值
D、是偶函數(shù)且無最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sinα-cosα=
2
,則tanα等于( 。
A、-1
B、-
2
2
C、
2
2
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知g(x)=mx,G(x)=lnx.
(1)若f(x)=G(x)-x+1,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若G(x)+x+2≤g(x)恒成立,求m的取值范圍;
(3)令b=G(a)+a+2,求證:b-2a≤1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)是定義在R上的偶函數(shù),且在區(qū)間[0,+∞)上是單調(diào)增函數(shù),如果實數(shù)t滿足f(t)+f(-t)<2f(1),那么t的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

滿足不等式x(x2+1)>(x+1)(x2-x+1)的x的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案