已知對(duì)
,直線
與橢圓
恒有公共點(diǎn),則實(shí)數(shù)
的取值范圍是( )
A.(0, 1) | B.(0,5) | C.[1,5) | D.[1,5)∪(5,+∞) |
試題分析:由于直線y=kx+1恒過點(diǎn)M(0,1)
要使直線y=kx+1與橢圓
恒有公共點(diǎn),則只要M(0,1)在橢圓的內(nèi)部或在橢圓上
從而有
,解可得m≥1且m≠5,故選D.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
:
的短軸長為
,且斜率為
的直線
過橢圓
的焦點(diǎn)及點(diǎn)
.
(1)求橢圓
的方程;
(2)已知直線
過橢圓
的左焦點(diǎn)
,交橢圓于點(diǎn)P、Q.
(。┤魸M足
(
為坐標(biāo)原點(diǎn)),求
的面積;
(ⅱ)若直線
與兩坐標(biāo)軸都不垂直,點(diǎn)
在
軸上,且使
為
的一條角平分線,則稱點(diǎn)
為橢圓
的“特征點(diǎn)”,求橢圓
的特征點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
過點(diǎn)
,且離心率為
.斜率為
的直線
與橢圓
交于
兩點(diǎn),以
為底邊作等腰三角形,頂點(diǎn)為
.
(1)求橢圓
的方程;
(2)求
的面積.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知橢圓C:
,點(diǎn)M與C的焦點(diǎn)不重合,若M關(guān)于C的焦點(diǎn)的對(duì)稱點(diǎn)分別為A,B,線段MN的中點(diǎn)在C上,則
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
經(jīng)過點(diǎn)
,離心率
,直線
與橢圓交于
,
兩點(diǎn),向量
,
,且
.
(1)求橢圓的方程;
(2)當(dāng)直線
過橢圓的焦點(diǎn)
(
為半焦距)時(shí),求直線
的斜率
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
橢圓
的一個(gè)焦點(diǎn)在拋物線
的準(zhǔn)線上,則該橢圓的離心率為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
[2014·焦作模擬]已知F1,F(xiàn)2是橢圓的兩個(gè)焦點(diǎn),橢圓上存在一點(diǎn)P,使∠F1PF2=60°,則橢圓離心率的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
橢圓
:
的左頂點(diǎn)為
,直線
交橢圓
于
兩點(diǎn)(
上
下),動(dòng)點(diǎn)
和定點(diǎn)
都在橢圓
上.
(1)求橢圓方程及四邊形
的面積.
(2)若四邊形
為梯形,求點(diǎn)
的坐標(biāo).
(3)若
為實(shí)數(shù),
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
過點(diǎn)
,且離心率
.
(1)求橢圓C的方程;
(2)已知過點(diǎn)
的直線
與該橢圓相交于A、B兩點(diǎn),試問:在直線
上是否存在點(diǎn)P,使得
是正三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>