分析 作出函數(shù)y=f(x)和y=x+a的圖象.利用兩個圖象的交點(diǎn)個數(shù)問題確定a的取值范圍.
解答 解:若0≤x≤2,則-2≤x-2≤0,
∴f(x)=2f(x-2)=2(1-|x-2+1|)=2-2|x-1|,0≤x≤2.
若2≤x≤4,則0≤x-2≤2,
∴f(x)=2f(x-2)=2(2-2|x-2-1|)=4-4|x-3|,2≤x≤4.
∴f(1)=2,f(2)=0,f(3)=4.
設(shè)y=f(x)和y=x+a,則方程f(x)=x+a在區(qū)間[-2,4]內(nèi)有3個不等實根,、
等價為函數(shù)y=f(x)和y=x+a在區(qū)間[-2,4]內(nèi)有3個不同的零點(diǎn).
作出函數(shù)f(x)和y=x+a的圖象,如圖:
,
當(dāng)直線經(jīng)過點(diǎn)A(2,0)時,兩個圖象有2個交點(diǎn),此時直線y=x+a為y=x-2,
當(dāng)直線經(jīng)過點(diǎn)O(0,0)時,兩個圖象有4個交點(diǎn),此時直線y=x+a為y=x,
當(dāng)直線經(jīng)過點(diǎn)B(3,4)和C(1,2)時,兩個圖象有3個交點(diǎn),此時直線y=x+a為y=x+1,
∴要使方程f(x)=x+a在區(qū)間[-2,4]內(nèi)有3個不等實根,
則a=1或-2<a<0.
故答案為:(-2,0)∪{1}.
點(diǎn)評 本題主要考查方程根的個數(shù)的應(yīng)用,將方程轉(zhuǎn)化為函數(shù),利用數(shù)形結(jié)合是解決此類問題的基本方法.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 7 | B. | 8 | C. | 9 | D. | 10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2014}{2015}$ | B. | $\frac{2015}{2016}$ | C. | $\frac{2016}{2017}$ | D. | $\frac{2017}{2018}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0個 | B. | 1個 | C. | 2個 | D. | 3個 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com