已知數(shù)列{an}的通項(xiàng)公式為an=19-2n(n∈N*),則Sn最大時(shí),n=
 
考點(diǎn):等差數(shù)列的前n項(xiàng)和
專題:等差數(shù)列與等比數(shù)列
分析:由已知得a1=19-2=17,從而Sn=
n
2
(17+19-2n)
=-(n2-18n)=-(n-9)2+81.由此能求出n=9時(shí),Sn取最大值81.
解答: 解:∵數(shù)列{an}的通項(xiàng)公式為an=19-2n(n∈N*),
∴a1=19-2=17,
Sn=
n
2
(17+19-2n)
=-(n2-18n)=-(n-9)2+81.
∴n=9時(shí),Sn取最大值81.
故答案為:9.
點(diǎn)評(píng):本題考查等差數(shù)列的前n項(xiàng)和取最大值時(shí)項(xiàng)數(shù)n的求法,解題時(shí)要認(rèn)真審題,注意配方法的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x1,x2∈R,常數(shù)a>0,定義運(yùn)算“*”為:x1*x2=4x1x2,等號(hào)右邊是通常的乘法運(yùn)算,如果在平面直角坐標(biāo)系中,動(dòng)點(diǎn)P的坐標(biāo)(x,y)滿足關(guān)系式:
y
2
*
y
2
=a*x,則動(dòng)點(diǎn)P的軌跡方程為( 。
A、y2=
1
2
ax
B、y2=ax
C、y2=2ax
D、y2=4ax

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知算法框圖如圖所示,則輸出的s為
 
(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A是三角形ABC的內(nèi)角,則“sinA=
3
2
”是“cosA=
1
2
”的( 。
A、必要不充分條件
B、充分不必要條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)計(jì)算(2
7
9
)0.5+(0.1)-2+(2
10
27
)-
2
3
-3π0+
37
48

(2)化簡(jiǎn)(a
8
5
b-
6
5
)-
1
2
5a4
÷
5b3
(a≠0,b≠0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=sin
3
,則f(1)+f(2)+f(3)+…+f(2010)=( 。
A、0
B、
3
C、-
3
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={0,2,4},則A的子集中含有元素2的子集共有
 
個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(1,n),
b
=(-1,n)
,若
a
b
,則|
a
|
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

AB為拋物線y2=2px(p>0)的過(guò)焦點(diǎn)F(
p
2
,0)
的弦,若A(x1,y1),B(x2,y2),則
y1y2
x1x2
=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案