【題目】《張丘建算經(jīng)》是公元5世紀(jì)中國古代內(nèi)容豐富的數(shù)學(xué)著作,書中卷上第二十三問:“今有女善織,日益功疾,初日織五尺,今一月織九匹三丈.問日益幾何?”其意思為“有個女子織布,每天比前一天多織相同量的布,第一天織五尺,一個月(按30天計(jì))共織390尺.問:每天多織多少布?”已知1匹=4丈,1丈=10尺,估算出每天多織的布的布約有(
A.0.55尺
B.0.53尺
C.0.52尺
D.0.5尺

【答案】A
【解析】解:設(shè)每天多織d尺,
由題意a1=5,{an}是等差數(shù)列,公差為d

解得d≈0.55.
故選:A.
設(shè)每天多織d尺,由題意a1=5,{an}是等差數(shù)列,公差為d,前30項(xiàng)和為390,由此利用等差數(shù)列前n項(xiàng)和公式能求出結(jié)果.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某居民小區(qū)內(nèi)建有一塊矩形草坪ABCD,AB=50米,,為了便于居民平時休閑散步,該小區(qū)物業(yè)管理公司將在這塊草坪內(nèi)鋪設(shè)三條小路OE,EFOF,考慮到小區(qū)整體規(guī)劃,要求OAB的中點(diǎn),點(diǎn)E在邊BC上,點(diǎn)F在邊AD上,且,如圖所示.

(Ⅰ)設(shè),試將的周長l表示成的函數(shù)關(guān)系式,并求出此函數(shù)的定義域;

(Ⅱ)經(jīng)核算,三條路每米鋪設(shè)費(fèi)用均為400元,試問如何設(shè)計(jì)才能使鋪路的總費(fèi)用最低?并求出最低總費(fèi)用.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(Ⅰ)求曲線在點(diǎn)處的切線方程;

(Ⅱ)求在區(qū)間上零點(diǎn)個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)等差數(shù)列的前項(xiàng)和為, ,對每個正整數(shù)之間插入3,得到一個新的數(shù)列.

1)求數(shù)列的通項(xiàng)公式;

(2)求數(shù)列的前項(xiàng)和為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲袋中有1只黑球,3只紅球;乙袋中有2只黑球,1只紅球.

(1)從甲袋中任取兩球,求取出的兩球顏色不相同的概率;

(2)從甲,乙兩袋中各取一球,求取出的兩球顏色相同的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)是定義域?yàn)镽的奇函數(shù),當(dāng)x<0時,.

(1)求f(2)的值;

(2)用定義法判斷yf(x)在區(qū)間(-∞,0)上的單調(diào)性.

(3)求的解析式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)定義域?yàn)?/span>,若對于任意的,都有,且時,有.

(1)判斷并證明函數(shù)的奇偶性;

(2)判斷并證明函數(shù)的單調(diào)性;

(3)設(shè),若,對所有恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= ,函數(shù)g(x)=b﹣f(2﹣x),其中b∈R,若函數(shù)y=f(x)﹣g(x)恰有4個零點(diǎn),則b的取值范圍是(
A.( ,+∞)
B.(﹣∞,
C.(0,
D.( ,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2+ax﹣lnx,a∈R.
(1)若函數(shù)f(x)在[1,2]上是減函數(shù),求實(shí)數(shù)a的取值范圍;
(2)令g(x)=f(x)﹣x2 , 是否存在實(shí)數(shù)a,當(dāng)x∈(0,e](e是自然常數(shù))時,函數(shù)g(x)的最小值是3,若存在,求出a的值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案