【題目】如圖,已知四棱錐P﹣ABCD的底面為菱形,∠BCD=120°,AB=PC=2,AP=BP= .
(Ⅰ)求證:AB⊥PC;
(Ⅱ)求點D到平面PAC的距離.
【答案】(Ⅰ)證明:取AB的中點O,連接PO,CO,AC,
∵△APB為等腰三角形,∴PO⊥AB
又∵四邊形ABCD是菱形,∠BCD=120°,
∴△ACB是等邊三角形,∴CO⊥AB
又CO∩PO=O,∴AB⊥平面PCO,
又PC平面PCO,∴AB⊥PC.
(II)解:∵∠APB=90°,AB=2,AP=BP= ,∴PO=1
∵△ABC是邊長為2的正三角形,
∴OC=
又PC=2,
∴PO2+CO2=PC2 ,
∴PO⊥OC,
又PO⊥AB,AB∩OC=O,
∴PO⊥平面ABC,
∵四邊形ABCD是菱形,
∴B,D到平面PAC的距離相等,設為h,
∵S△PAC= = ,S△ABC= .
∴由VB﹣PAC=VP﹣ABC , 可得 ,
∴h= .
【解析】(Ⅰ)取AB的中點O,連接PO,CO,AC,由已知條件推導出PO⊥AB,CO⊥AB,從而AB⊥平面PCO,由此能證明AB⊥PC.(Ⅱ)由VB﹣PAC=VP﹣ABC , 求點D到平面PAC的距離.
【考點精析】本題主要考查了空間角的異面直線所成的角的相關知識點,需要掌握已知為兩異面直線,A,C與B,D分別是上的任意兩點,所成的角為,則才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】已知正項數列{an}的前n項和為Sn , 點(an , Sn)(n∈N*)都在函數f(x)= 的圖象上.
(1)求數列{an}的通項公式;
(2)若bn=an3n , 求數列{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某化工廠擬建一個下部為圓柱,上部為半球的容器(如圖,圓柱高為h,半徑為r,不計厚度,單位:米),按計劃容積為72π立方米,且h≥2r,假設其建造費用僅與表面積有關(圓柱底部不計),已知圓柱部分每平方米的費用為2千元,半球部分每平方米4千元,設該容器的建造費用為y千元. (Ⅰ)求y關于r的函數關系,并求其定義域;
(Ⅱ)求建造費用最小時的r.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數y=sin2x的圖象經過適當變換可以得到y(tǒng)=cos2x的圖象,則這種變換可以是( )
A.沿x軸向右平移 個單位
B.沿x軸向左平移 個單位
C.沿x軸向左平移 個單位
D.沿x軸向右平移 個單位
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設Sn是數列{an}的前n項和,已知a1=3,an+1=2Sn+3(n∈N)
(I)求數列{an}的通項公式;
(Ⅱ)令bn=(2n﹣1)an , 求數列{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}滿足對任意的n∈N* , 都有a13+a23++an3=(a1+a2++an)2且an>0.
(1)求a1 , a2的值;
(2)求數列{an}的通項公式;
(3)若bn= ,記Sn= ,如果Sn< 對任意的n∈N*恒成立,求正整數m的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】當n為正整數時,函數N(n)表示n的最大奇因數,如N(3)=3,N(10)=5,…,設Sn=N(1)+N(2)+N(3)+N(4)+…+N(2n﹣1)+N(2n),則Sn= .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com