A. | $\frac{7}{11}$ | B. | $\frac{9}{22}$ | C. | $\frac{7}{13}$ | D. | $\frac{9}{14}$ |
分析 作出不等式組對應的平面區(qū)域,求出對應區(qū)域的面積,結合面積相等,建立方程關系即可得到結論.
解答 解:如圖所示,陰影部分是不等式組表示的平面區(qū)域,易求得各點坐標A(6,0),B(2,4),C(0,2),
且直線AB與BC垂直,|BC|=2$\sqrt{2}$,|AB|=4$\sqrt{2}$,
|OA|=6,|OC|=2,所以陰影部分的面積為S=$\frac{1}{2}×2×6$+$\frac{1}{2}×2\sqrt{2}×4\sqrt{2}$=6+8=14,
設直線y=ax與x+y-6=0交于點D(x,y),
則S△AOD=$\frac{1}{2}×$6y=$\frac{1}{2}×14$,
得y=$\frac{7}{3}$,于是x+$\frac{7}{3}$-6=0,得x=$\frac{11}{3}$,
所以a=$\frac{y}{x}$=$\frac{7}{11}$.
故選:A.
點評 本題主要考查線性規(guī)劃的應用,根據(jù)面積相等建立方程是解決本題的關鍵.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{a}<\frac{1}$ | B. | |a|>|b| | C. | a2>b2 | D. | a3>b3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{\sqrt{3}}}{2}$ | B. | $-\frac{{\sqrt{2}}}{2}$ | C. | $-\frac{{\sqrt{2}}}{4}$ | D. | $-\frac{{\sqrt{3}}}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ②③ | B. | ②④ | C. | ③④ | D. | ①④ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{7}$ | B. | -$\frac{1}{7}$ | C. | $\frac{4\sqrt{3}}{7}$ | D. | -$\frac{4\sqrt{3}}{7}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com