18.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-1,x≤-1}\\{x,-1<x<1}\\{1,x≥1}\end{array}\right.$,函數(shù)g(x)=ax2-x+1,若函數(shù)y=f(x)-g(x)恰好有2個不同零點,則實數(shù)a的取值范圍是(-∞,0)∪(0,1).

分析 化函數(shù)y=f(x)-g(x)恰好有2個不同零點為函數(shù)y=f(x)+x-1與函數(shù)y=ax2的圖象有兩個不同的交點,畫出兩函數(shù)的圖象,討論a>0,a<0,從而可得a的范圍.

解答 解:令y=f(x)-g(x)=0,
即有f(x)-(ax2-x+1)=0,
則f(x)+x-1=ax2
而f(x)+x-1=$\left\{\begin{array}{l}{x-2,x≤-1}\\{2x-1,-1<x<1}\\{x,x≥1}\end{array}\right.$,
作函數(shù)y=f(x)+x-1與函數(shù)y=ax2的圖象如右,
當a<0時,y=f(x)+x-1與y=ax2的圖象恒有兩個交點;
當a>0時,當y=ax2的圖象過點(1,1),可得a=1,
由圖象可得0<a<1時,y=f(x)+x-1與y=ax2的圖象有兩個交點.
綜上可得,實數(shù)a的取值范圍是(-∞,0)∪(0,1),
故答案為:(-∞,0)∪(0,1).

點評 本題考查分段函數(shù)的運用:求函數(shù)的零點,考查數(shù)形結(jié)合和轉(zhuǎn)化思想的運用,注意函數(shù)的零點與函數(shù)的圖象的關(guān)系,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.拋物線的焦點F在x軸上,直線y=2與拋物線相交于點A,且|AF|=$\frac{5}{2}$,求拋物線的標準方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知實數(shù)a>0,函數(shù)f(x)=$\left\{\begin{array}{l}{2{x}^{2}-4ax,x≥0}\\{-2{x}^{2}-3ax,x<0}\end{array}\right.$
(1)若a=2,求函數(shù)f(x)在區(qū)間[-2,3]上的值域;
(2)設(shè)s1,s2,t1,t2∈R,s1<t1,s2<t2,若當且僅當實數(shù)m∈[s1,t1)∪(s2,t2]時,關(guān)于x的方程f(x)=m在[-2,2]上有唯一解,求t1+t2+s1+s2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.函數(shù)f(x)=|2x-1|+|2x+1|(x∈R).
(1)求不等式f(x)<4的解集M;
(2)若a∈M,b∈M,求證:|$\frac{a+b}{1+ab}$|<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=2sin2($\frac{π}{4}$-x)-$\sqrt{3}$cos2x.
(1)求函數(shù)f(x)的最小正周期和單調(diào)遞減區(qū)間;
(2)若f(x)<m+2對x∈[0,$\frac{π}{6}$]恒成立,求實數(shù)m的取值范圍;
(3)若$\frac{π}{3}$<α<$\frac{π}{2}$,且f(α)=$\frac{11}{5}$,求cos2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)f(x)=cos2x+2sinx+2的圖象的一條對稱軸方程為( 。
A.x=$\frac{π}{6}$B.x=$\frac{π}{4}$C.x=$\frac{π}{3}$D.x=$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若函數(shù)f(x)=$\left\{\begin{array}{l}{lg(|x|-1),|x|>1}\\{asin(\frac{π}{2}x),|x|≤1}\end{array}\right.$.關(guān)于x的方程f2(x)-(a+1)f(x)+a=0,給出下列結(jié)論,其中正確的有①②③(填出所有正確結(jié)論的序號)
①存在這樣的實數(shù)a,使得方程有3個不同的實根;
②不存在這樣的實數(shù)a,使得方程有4個不同的實根;
③存在這樣的實數(shù)a,使得方程有5個不同的實根;
④不存在這樣的實數(shù)a,使得方程有6個不同的實根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.解答題
$\underset{lim}{x→0}$$\frac{{∫}_{0}^{x}In(1+{t}^{2})dt}{{x}^{2}sinx}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知命題p:若x>y,則x2>y2;命題q:“a=0”是“f(x)=$\frac{1}{x}$+a為奇函數(shù)”的充分必要條件.在命題①p∧q;②p∨q;③p∧¬q;④¬p∨q中,真命題是(  )
A.①③B.①④C.②③D.②④

查看答案和解析>>

同步練習(xí)冊答案