分析 首先作出輔助線連接AN構(gòu)造出三角形,然后在△AMN中連續(xù)兩次運用余弦定理可得出AN和cos∠MAN的值,再由cos∠ANB=cos(30°+∠MAN)即可得出其余弦值,最后在△ANB中運用余弦定理即可得出所求的結(jié)果.
解答 解:連接AN,則在△AMN中,應(yīng)用余弦定理可得AN=$\sqrt{8{0}^{2}+5{0}^{2}-2×80×50×\frac{1}{2}}$=70,
∴cos∠MAN=$\frac{6400+4900-2500}{2×80×70}$=$\frac{11}{14}$
∴cos∠ANB=cos(30°+∠MAN)=$\frac{3\sqrt{3}}{14}$
∴AB=$\sqrt{4900+2700-2×70×30\sqrt{3}×\frac{3\sqrt{3}}{14}}$=70,
故答案為70.
點評 本題主要考查了余弦定理在解三角形中的應(yīng)用、兩角差的余弦公式和同角三角函數(shù)的基本關(guān)系,屬中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,1) | B. | (1,$\sqrt{2}$) | C. | (-2,-$\sqrt{2}$) | D. | (1,$\sqrt{2}$)∪(-$\sqrt{2}$,-1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第一、二象限 | C. | 第二象限 | D. | 第二、四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x-4y-11=0 | B. | 4x-y+11=0 | C. | x-2y+7=0 | D. | x-2y-7=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
組號 | 第一組 | 第二組 | 第三組 | 第四組 | 第五組 |
分組 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com