A. | (0,1) | B. | (1,$\sqrt{2}$) | C. | (-2,-$\sqrt{2}$) | D. | (1,$\sqrt{2}$)∪(-$\sqrt{2}$,-1) |
分析 由導(dǎo)數(shù)判斷f(x)在(-1,1)遞增,再由f(-x)=-f(x),不等式f(1-a)+f(l-a2)<0化為$\left\{\begin{array}{l}{-1<1-a<1}\\{-1<{a}^{2}-1<1}\\{1-a<{a}^{2}-1}\end{array}\right.$,求解不等式組得答案.
解答 解:f(x)的導(dǎo)函數(shù)為f′(x)=l+cosx,
則f′(x)>0在(-1,1)恒成立,即有f(x)在(-1,1)遞增,
又f(x)為奇函數(shù),即有f(-x)=-f(x),
則f(1-a)+f(l-a2)<0即為f(1-a)<-f(l-a2)=f(a2-1),
即$\left\{\begin{array}{l}{-1<1-a<1}\\{-1<{a}^{2}-1<1}\\{1-a<{a}^{2}-1}\end{array}\right.$,即有$\left\{\begin{array}{l}{0<a<2}\\{-\sqrt{2}<a<\sqrt{2}且a≠0}\\{a>1或a<-2}\end{array}\right.$,
解得,1<a<$\sqrt{2}$.
故選:B.
點評 本題考查函數(shù)的單調(diào)性和奇偶性的判斷和運用,考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查運算能力,屬于中檔題和易錯題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x>2,x<-3 | B. | {x|x>2,x<-3} | C. | (-∞,-2)∪(3,+∞) | D. | x>3,x<-2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\overrightarrow{AD}$ | B. | $\overrightarrow 0$ | C. | $\overrightarrow{BC}$ | D. | $\overrightarrow{DA}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 4 | C. | 15 | D. | 16 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com