已知:函數(shù)f(x)=
告xx+。一2a2 xre(a,“)·
(I)求f(x)的單調(diào)區(qū)間福
(II)若f(x) >0恒成立,求a的取值范圍.
解:(Ⅰ)
的定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210852181533.png" style="vertical-align:middle;" />,
………3分
(1)當(dāng)
時(shí),在
上
,在
上
,
因此,
在
上遞減,在
上遞增. ………5分
(2)當(dāng)
時(shí),在
上
,在
上
,
因此,
在
上遞減,在
上遞增. ………7分
(Ⅱ)由(Ⅰ)知:
時(shí),
. ………10分
當(dāng)
時(shí),
,
. ………13分
綜上得:
. ………14分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知
是實(shí)數(shù),函數(shù)
.
(1)若
,求
的值及曲線
在點(diǎn)
處的切線方程.
(2)求
在
上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)函數(shù)
,其中
為大于零的常數(shù).
(1)當(dāng)
時(shí),求函數(shù)
的單調(diào)區(qū)間和極值;
(2)若在區(qū)間
上至少存在一點(diǎn)
,使得
成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
.
(1)若
,求函數(shù)
的最大值.
(2)若
在定義域內(nèi)為增函數(shù),求實(shí)數(shù)
的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)函數(shù)
,
(1)當(dāng)
時(shí),求函數(shù)
的單調(diào)遞減區(qū)間;
(2)若函數(shù)
有相同的極大值,且函數(shù)
在區(qū)間
上的
最大值為
,求實(shí)數(shù)
的值.(其中e是自然對(duì)數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
.
(Ⅰ)求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)若
對(duì)定義域每的任意
恒成立,求實(shí)數(shù)
的取值范圍;
(Ⅲ)證明:對(duì)于任意正整數(shù)
,不等式
恒成立。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
函數(shù)
在[0,3]上的最大值和最小值分別是( ).
A.5,-15 | B.5,-14 | C.5,-16 | D.5,15 |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知x=-
是函數(shù)f(x)=ln(x+1)-x+
x
2的一個(gè)極值點(diǎn)。
(1)求a的值;
(2)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
函數(shù)
在
上最大值和最小值分別是 ( )
A.5 , -15 | B.5,-4 | C.-4,-15 | D.5,-16 |
查看答案和解析>>