已知點M(1,8)、N(7,2),若直線l:2x-5y+10=0與直線MN相交于點P,則=_______.

解析:設λ=,則P(,).

    ∵P∈l,∴2()-5()+10=0.解得λ=2.

答案:2

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知點B′為圓A:(x-1)2+y2=8上任意一點、點B(-1,0).線段BB′的垂直平分線和線段AB′相交于點M.
(1)求點M的軌跡E的方程;
(2)已知點M(x0,y0)為曲線E上任意一點.求證:點P(
3x0-2
2-x0
4y0
2-x0
)
關于直線x0x+2y0y=2的對稱點為定點、并求出該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點M(x,y)在不等式組
x+y+2≥0
x+2y+1≤0
y≥0
所表示的平面區(qū)域內(nèi),則r=(x-1)2+(y-2)2的值域為( 。
A、[8,13]
B、[8,17]
C、[
6
5
5
,13]
D、[
6
5
5
,17]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點M(-8,0),點P,Q分別在x,y軸上滑動,且
MQ
PQ
,若點N為線段PQ的中點.
(1)求動點N的軌跡C的方程;
(2)點H(-1,0),過點H做直線l交曲線C于A,B兩點,且
HA
HB
(λ>1),點A關于x軸的對稱點為D,已知點F(1,0),求證:
FD
=-λ
FB
;
(3)過點F(1,0)的直線交曲線C于E,K兩點,點E關于x軸的對稱點為G,求證:直線GK過定點,并求出定點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知點M(-8,0),點P,Q分別在x,y軸上滑動,且
MQ
PQ
,若點N為線段PQ的中點.
(1)求動點N的軌跡C的方程;
(2)點H(-1,0),過點H做直線l交曲線C于A,B兩點,且
HA
HB
(λ>1),點A關于x軸的對稱點為D,已知點F(1,0),求證:
FD
=-λ
FB
;
(3)過點F(1,0)的直線交曲線C于E,K兩點,點E關于x軸的對稱點為G,求證:直線GK過定點,并求出定點坐標.

查看答案和解析>>

同步練習冊答案