精英家教網 > 高中數學 > 題目詳情
10.已知數列{an}的前n項和為Sn,且a1=0,an+1=$\frac{n}{{S}_{n+1}+{S}_{n}}$(n∈N+).則a33=( 。
A.4(4$\sqrt{2}$-$\sqrt{31}$)B.4(4$\sqrt{2}$-$\sqrt{30}$)C.4($\sqrt{33}$-4$\sqrt{2}$)D.4($\sqrt{33}$-$\sqrt{31}$)

分析 an+1=$\frac{n}{{S}_{n+1}+{S}_{n}}$(n∈N+),可得${S}_{n+1}^{2}$-${S}_{n}^{2}$=n,利用“累加求和”方法、等差數列的求和公式及其遞推關系即可得出.

解答 解:∵an+1=$\frac{n}{{S}_{n+1}+{S}_{n}}$(n∈N+),an+1=Sn+1-Sn,∴${S}_{n+1}^{2}$-${S}_{n}^{2}$=n,
∴${S}_{n}^{2}$=$({S}_{n}^{2}$-${S}_{n-1}^{2})$+$({S}_{n-1}^{2}-{S}_{n-2}^{2})$+…+$({S}_{2}^{2}-{S}_{1}^{2})$+${S}_{1}^{2}$=(n-1)+(n-2)+…+1+0=$\frac{n(n-1)}{2}$.
∴Sn=$\sqrt{\frac{n(n-1)}{2}}$,
∴a33=S33-S32=$\sqrt{\frac{33×32}{2}}$-$\sqrt{\frac{32×31}{2}}$=4$(\sqrt{33}-\sqrt{31})$,
故選:D.

點評 本題考查了等差數列的通項公式與求和公式、“累加求和”方法、遞推關系,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

20.某幾何體的三視圖如圖所示,其中正視圖和俯視圖都是腰長為2的等腰三角形,俯視圖是半徑為1的圓,則該幾何體的表面積是( 。
A.πB.C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

1.已知函數f(x)=$\frac{1}{3}$|x|3-ax2+(6-a)|x|+b(a,b∈R),若f(x)有六個不同的單調區(qū)間,則實數a的取值范圍為( 。
A.a<-2,或a>0B.0<a<1C.1<a<3D.2<a<6

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

18.甲射擊命中目標的概率是$\frac{1}{4}$,乙命中目標的概率是$\frac{1}{3}$,丙命中目標的概率是$\frac{1}{2}$,現在三人同時射擊目標,則目標被擊中的概率為(  )
A.$\frac{3}{4}$B.$\frac{2}{3}$C.$\frac{4}{5}$D.$\frac{7}{10}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

5.化簡求值:
(1)sin(-1320°)cos1110°+cos(-1020°)sin750°
(2)$\frac{si{n}^{2}(α-2π)cos(3π+α)}{cos(\frac{3π}{2}-α)cos(α-π)sin(-α-3π)}$.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

15.如圖,在四棱錐P-ABCD中,底面ABCD是正方形,AD=PD=2,PA=2$\sqrt{2}$,∠PDC=120°.
(1)如圖2,設點E為AB的中點,點F在PC的中點,求證:EF∥平面PAD;
(2)已知網絡紙上小正方形的邊長為0.5,請你在網格紙用粗線畫圖1中四棱錐P-ABCD的俯視圖(不需要標字母),并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

2.閱讀如圖所示的程序框圖,運行相應程序,則輸出的S=(  )
A.2.$\stackrel{•}{6}$B.3.0$\stackrel{•}{6}$C.4.1$\stackrel{•}{6}$D.4.5$\stackrel{•}{6}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

5.如圖,在棱柱ABCD-A1B1C1D1中,AA1⊥底面ABCD,底面ABCD為直角梯形,其中AB∥CD,AB⊥AD,AB=AC=2CD=4,AA1=3,過AC的平面分別與A1B1,B1C1交于E1,F1,且E1為A1B1的中點.
(Ⅰ) 求證:平面ACF1E1∥平面A1C1D;
(Ⅱ) 求二面角A1-AC-E1的大。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

6.如圖,已知ABCDEF是正六邊形,GA、ND都垂直于平面ABCDEF,平面FGN交線段DE于點R,點M是CD的中點,AB=DN=1,AG=2.
(1)求證:AM∥平面GFRN;
(2)求二面角A-GF-N的余弦值.

查看答案和解析>>

同步練習冊答案