【題目】十九世紀(jì)末:法國學(xué)者貝特朗在研究幾何概型時提出了“貝特朗悖論”,即“在一個圓內(nèi)任意選一條弦,這條弦的弦長長于這個圓的內(nèi)接等邊三角形邊長的概率是多少?”貝特朗用“隨機半徑”“隨機端點”“隨機中點”三個合理的求解方法,但結(jié)果都不相同.該悖論的矛頭直擊概率概念本身,強烈地刺激了概率論基礎(chǔ)的嚴(yán)格化.已知“隨機端點”的方法如下:設(shè)為圓上一個定點,在圓周上隨機取一點,連接,所得弦長大于圓的內(nèi)接等邊三角形邊長的概率.則由“隨機端點”求法所求得的概率為( )
A.B.C.D.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:對于任意,滿足條件且是與無關(guān)的常數(shù)的無窮數(shù)列稱為數(shù)列.
(1)若,證明:數(shù)列是數(shù)列;
(2)設(shè)數(shù)列的通項為,且數(shù)列是數(shù)列,求常數(shù)的取值范圍;
(3)設(shè)數(shù)列,問數(shù)列是否是數(shù)列?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四棱錐中,四邊形為矩形, 為等腰三角形, ,平面平面,且, , 分別為的中點.
(1)證明: 平面;
(2)證明:平面平面;
(3)求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“90后”指1990年及以后出生,“80后”指1980-1989年之間出生,“80前”指1979年及以前出生.某調(diào)查機構(gòu)對全國互聯(lián)網(wǎng)行業(yè)進行調(diào)查統(tǒng)計,得到整個互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖、90后從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖,則下列結(jié)論中不一定正確的是( )
A.互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占一半以上
B.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過總?cè)藬?shù)的
C.互聯(lián)網(wǎng)行業(yè)中從事運營崗位的人數(shù)90后比80前多
D.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:若數(shù)列中存在,其中,,,,及均為正整數(shù),且(),則稱數(shù)列為“數(shù)列”.
(1)若數(shù)列的前項和,求證:是“數(shù)列”;
(2)若是首項為1,公比為的等比數(shù)列,判斷是否是“數(shù)列”,說明理由;
(3)若是公差為()的等差數(shù)列且(),,求證:數(shù)列是“數(shù)列”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若在區(qū)間內(nèi)單調(diào)遞增,求的取值范圍;
(2)若在區(qū)間內(nèi)存在極大值,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在實數(shù)集R中,我們定義的大小關(guān)系“>”為全體實數(shù)排了一個“序”.類似的,我們在平面向量集上也可以定義一個稱“序”的關(guān)系,記為“”.定義如下:對于任意兩個向量,“”當(dāng)且僅當(dāng)“”或“”。按上述定義的關(guān)系“”,給出如下四個命題:
①若,則;
②若,則;
③若,則對于任意;
④對于任意向量,若,則。
其中真命題的序號為__________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分12分) 如圖,的外接圓的半徑為,所在的平面,,,,且,.
(1)求證:平面ADC平面BCDE.
(2)試問線段DE上是否存在點M,使得直線AM與平面ACD所成角的正弦值為?若存在,
確定點M的位置,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題錯誤的是( )
A. 命題“若,則”的逆否命題為“若 ,則”
B. 若為假命題,則均為假命題
C. 對于命題:,使得,則:,均有
D. “”是“”的充分不必要條件
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com