設(shè)函數(shù)f(x)=x-
1
x
,對任意x∈[1,+∞),f(mx)+mf(x)<0恒成立,則實數(shù)m的取值范圍是( 。
A、(-1,1)
B、(1,+∞)
C、(-∞,-1)
D、(-∞,-1)∪(1,+∞)
考點:函數(shù)恒成立問題
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:顯然m≠0,分當m>0與當m<0兩種情況進行討論,并進行變量分離即可得出答案.
解答: 解:∵f(x)=x-
1
x
,
∴函數(shù)的定義域為{x|x≠0},
∵任意x∈[1,+∞),f(mx)+mf(x)<0恒成立,
∴m≠0且mx-
1
mx
+mx-
m
x
<0,
即2mx<(m+
1
m
1
x
,
∴2mx2<m+
1
m
恒成立,
①當m>0時,不等式等價為2x2<1+
1
m2
,
∵y=2x2在x∈[1,+∞)上無最大值,因此此時不合題意;
②當m<0時,不等式等價為2x2>1+
1
m2
,
此時函數(shù)y=2x2在x∈[1,+∞)上的最小值為2,
∴要使不等式恒成立,則2>1+
1
m2

即m2>1,
解得m<-1或m>1(舍去).
綜合可得:m<-1.
故選:C.
點評:本題主要考查了不等式恒成立問題的基本解法及分類討論思想,利用分離變量法將不等式恒成立轉(zhuǎn)化為函數(shù)最值的方法是解決此類問題的基本方法.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

若關(guān)于x的不等式x2-(a-1)x>-4對于x∈R恒成立,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A為橢圓C:
x2
a2
+
y2
b2
=1
﹙a>b>0﹚的長軸的一個端點,P為橢圓C的一個點,O為坐標原點,若△PAO為等腰直角三角形,則橢圓的離心率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)為R上的可導(dǎo)函數(shù),且對?x∈R,均有f(x)>f′(x),則有( 。
A、e2014f(-2014)<f(0),f(2014)<e2014f(0)
B、e2014f(-2014)<f(0),f(2014)>e2014f(0)
C、e2014f(-2014)>f(0),f(2014)<e2014f(0)
D、e2014f(-2014)>f(0),f(2014)>e2014f(0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合M={x|y2=x+1},P={x|y2=-2(x-3)},那么M∩P等于( 。
A、{(x,y)|x=
5
3
,y=±
2
6
3
}
B、{x|-1<x<3}
C、{x|-1≤x≤3}
D、{x|x≤3}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知0<x<
π
2
,則
x
-
1
sinx
<0是
1
sinx
-x>0成立的(  )
A、充要條件
B、充分不必要條件
C、必要不充分條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
25
+
y2
16
=1
及以下3個函數(shù)①f(x)=-x;②f(x)=cos(x-
π
2
);③f(x)=lnx,其中函數(shù)圖象能等分該橢圓面積的函數(shù)個數(shù)有( 。
A、0個B、1個C、2個D、3個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求二次函數(shù)f(x)=x2-2x+2在[t,t+1]上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

解不等式
x2+5x+1
3+2x-x2
>1

查看答案和解析>>

同步練習冊答案