已知A(-1,1),B(1,2),C(-2,-1),D(3,4),則向量
AB
CD
方向上的投影為
3
2
2
3
2
2
分析:根據(jù)點的坐標(biāo),分別算出
CD
=(5,5)、
AB
=(2,1),從而算出
AB
CD
=15且|
CD
|=5
2
.再利用向量投影的公式加以計算,即可得到向量
AB
CD
方向上的投影的值.
解答:解:∵C(-2,-1),D(3,4),∴
CD
=
OD
-
OB
=(5,5),
同理可得
AB
=
OB
-
OA
=(2,1),
AB
CD
=5×2+5×1=15,
|CD|
=
5 2+5 2
=5
2

設(shè)
AB
、
CD
的夾角為α,
則向量
AB
CD
方向上的投影為|
AB
|cosα=
AB
CD
|CD|
=
15
5
2
=
3
2
2

故答案為:
3
2
2
點評:本題給出A、B、C、D各點的坐標(biāo),求向量
AB
CD
方向上的投影.著重考查了平面向量的坐標(biāo)運算、數(shù)量積的公式及其運算性質(zhì)和向量投影的概念等知識,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知A(1,1),B(4,3),C(2m,m-1),
(Ⅰ)若A,B,C可構(gòu)成三角形,求實數(shù)m所要滿足的條件;
(Ⅱ)若A,B,C,構(gòu)成以∠C為直角的直角三角形,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點P(x,y)在平行四邊形ABCD內(nèi),已知A(-1,-1),B(2,1),D(0,2),則z=2x+y的最大值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合An={1,3,7,…,(2n-1)}(n∈N*),若從集合An中任取k(k=1,2,3,…,n)個數(shù),其所有可能的k個數(shù)的乘積的和為TK(若只取一個數(shù),規(guī)定乘積為此數(shù)本身),記Sn=T1+T2+T3+…+Tn.例如當(dāng)n=1時,A1={1},T1=1,S1=1;當(dāng)n=2時,A2={1,3},T1=1+3,T2=1×3,S2=1+3+1×3=7.則Sn=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(Ⅰ)已知a+a-1=3,求a2+a-2的值;
(Ⅱ)化簡求值:1.10+
364
-0.5-2+lg25+2lg2;
(Ⅲ)解不等式:log2(x+1)<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a、b是不共線的向量,若1a+b,=a+λ2b(λ1、λ2∈R)則A、B、C三點共線的充要條件為(    )

A.λ12=-1                              B.λ12=1

C.λ1λ2-1=0                              D.λ1·λ2+1=0

查看答案和解析>>

同步練習(xí)冊答案