精英家教網 > 高中數學 > 題目詳情

【題目】如圖,在三棱臺ABC﹣A1B1C1中,平面α過點A1 , B1 , 且CC1∥平面α,平面α與三棱臺的面相交,交線圍成一個四邊形.
(Ⅰ)在圖中畫出這個四邊形,并指出是何種四邊形(不必說明畫法、不必說明四邊形的形狀);
(Ⅱ)若AB=8,BC=2B1C1=6,AB⊥BC,BB1=CC1 , 平面BB1C1C⊥平面ABC,二面角B1﹣AB﹣C等于60°,求直線AB1與平面α所成角的正弦值.

【答案】解:(Ⅰ)圍成的四邊形如圖所示,它是平行四邊形;(Ⅱ)∵AB⊥BC,平面BB1C1C⊥平面ABC,
且平面BB1C1C⊥平面ABC=BC,AB∩平面ABC
∴AB⊥平面BB1C1C,
∴AB⊥BB1 , ∠B1BC是二面角B1﹣AB﹣C的平面角,
∴∠B1BC=60°,
以BC,AB為x,y軸,B為原點建立如圖直角坐標系B﹣xyz,
由已知CC1∥α,B1M=α∩平面BB1C1C,知B1M∥CC1 ,
又由臺體的性質,BC∥B1C1 ,
∴MCC1B1是平行四邊形,
∴MC=B1C1=3,M是BC的中點,
又BB1=CC1 , 則B1到平面ABC的距離,h= ,
同理N是AC的中點,
A(0,﹣8,0),B(0,0,0),B1(﹣ ,0, ),M(﹣3,0,0),
=( ,0, ), =(0,﹣4,0), =(﹣ ,8, ).
設平面α的法向量為 =(x,y,z),則
得一個法向量是 =( ,0,﹣1),
設直線AB1與平面α所成角為θ,則sinθ=| |=
∴直線AB1與平面α所成角的正弦值為

【解析】(Ⅰ)圍成的四邊形如圖所示,它是平行四邊形;(Ⅱ)以BC,AB為x,y軸,B為原點建立如圖直角坐標系B﹣xyz,求出平面α的法向量,利用向量的夾角公式,即可求直線AB1與平面α所成角的正弦值.
【考點精析】認真審題,首先需要了解平面的基本性質及推論(如果一條直線上的兩點在一個平面內,那么這條直線在此平面內;過不在一條直線上的三點,有且只有一個平面;如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線),還要掌握空間角的異面直線所成的角(已知為兩異面直線,A,C與B,D分別是上的任意兩點,所成的角為,則)的相關知識才是答題的關鍵.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某企業(yè)為了解下屬某部門對本企業(yè)職工的服務情況,隨機訪問50名職工,根據這50名職工對該部門的評分,繪制頻率分布直方圖(如圖所示),其中樣本數據分組區(qū)間為

1)求頻率分布直方圖中的值;

2)估計該企業(yè)的職工對該部門評分不低于80的概率;

3)從評分在的受訪職工中,隨機抽取2人,求此2人評分都在的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】小明在石家莊市某物流派送公司找到了一份派送員的工作,該公司給出了兩種日薪薪酬方案.甲方案:底薪100元,每派送一單獎勵1元;乙方案:底薪140元,每日前55單沒有獎勵,超過55單的部分每單獎勵12元.

(Ⅰ)請分別求出甲、乙兩種薪酬方案中日薪y(單位:元)與送貨單數n的函數關系式;

(Ⅱ)根據該公司所有派送員100天的派送記錄,發(fā)現(xiàn)派送員的日平均派送單數滿足以下條件:在這100天中的派送量指標滿足如圖所示的直方圖,其中當某天的派送量指標在(,]n=1,2,3,4,5)時,日平均派送量為50+2n單.若將頻率視為概率,回答下列問題:

①根據以上數據,設每名派送員的日薪為X(單位:元),試分別求出甲、乙兩種方案的日薪X的分布列,數學期望及方差;

②結合①中的數據,根據統(tǒng)計學的思想,幫助小明分析,他選擇哪種薪酬方案比較合適,并說明你的理由。

(參考數據:0.62=0.36,1.42=1.9 6,2.6 2=6.76,3.42=1 1.56,3.62=12.96,4.62=21.16,15.62=243.36,20.42=416.16,44.42=1971.36)

【答案】甲方案的函數關系式為: ,乙方案的函數關系式為:;(Ⅱ)①見解析,②見解析.

【解析】

由題意可得甲方案中派送員日薪(單位:元)與送單數的函數關系式為: , 乙方案中派送員日薪(單位:元)與送單數的函數關系式為:.

①由題意求得X的分布列,據此計算可得,.

②答案一:由以上的計算可知,遠小于,即甲方案日工資收入波動相對較小,所以小明應選擇甲方案.

答案二:由以上的計算結果可以看出,,所以小明應選擇乙方案.

Ⅰ)甲方案中派送員日薪(單位:元)與送單數的函數關系式為: ,

乙方案中派送員日薪(單位:元)與送單數的函數關系式為:

①由已知,在這100天中,該公司派送員日平均派送單數滿足如下表格:

單數

52

54

56

58

60

頻率

0.2

0.3

0.2

0.2

0.1

所以的分布列為:

152

154

156

158

160

0.2

0.3

0.2

0.2

0.1

所以

所以的分布列為:

140

152

176

200

0.5

0.2

0.2

0.1

所以

②答案一:由以上的計算可知,雖然,但兩者相差不大,且遠小于,即甲方案日工資收入波動相對較小,所以小明應選擇甲方案.

答案二:由以上的計算結果可以看出,,即甲方案日工資期望小于乙方案日工資期望,所以小明應選擇乙方案.

【點睛】

本題主要考查頻率分布直方圖,數學期望與方差的含義與實際應用等知識,意在考查學生的轉化能力和計算求解能力.

型】解答
束】
20

【題目】已知橢圓C:(a>b>0)的左、右焦點分別為F1,F(xiàn)2,且離心率為,M為橢圓上任意一點,當∠F1MF2=90°時,△F1MF2的面積為1.

(Ⅰ)求橢圓C的方程;

(Ⅱ)已知點A是橢圓C上異于橢圓頂點的一點,延長直線AF1,AF2分別與橢圓交于點B,D,設直線BD的斜率為k1,直線OA的斜率為k2,求證:k1·k2等于定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知x,y滿足約束條件 ,若z=y﹣ax取得最大值的最優(yōu)解不唯一,則實數a的值為(
A. 或﹣1
B.2或
C.2或﹣1
D.2或1

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校數學課外興趣小組為研究數學成績是否與性別有關,先統(tǒng)計本校高三年級每個學生一學期數學成績平均分(采用百分制),剔除平均分在40分以下的學生后,共有男生300名,女生200名.現(xiàn)采用分層抽樣的方法,從中抽取了100名學生,按性別分為兩組,并將兩組學生成績分為6組,得到如下所示頻數分布表.

(1)估計男、女生各自的平均分(同一組數據用該組區(qū)間中點值作代表),從計算結果看,數學成績與性別是否有關;

(2)規(guī)定80分以上為優(yōu)分(含80分)請你根據已知條件作出2×2列聯(lián)表,并判斷是否有90%以上的把握認為“數學成績與性別有關”.

附表及公式:

P(K2k)

0.100

0.050

0.010

0.001

k

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】一次考試共有10道選擇題,每道選擇題都有4個選項,其中有且只有一個是正確的.評分標準規(guī)定:每題只選一個選項,答對得5分,不答或答錯得零分.某考生已確定有7道題的答案是正確的,其余題中:有一道題都可判斷兩個選項是錯誤的,有一道題可以判斷一個選項是錯誤的,還有一道題因不理解題意只好亂猜.試求出該考生:

Ⅰ)得50分的概率;

Ⅱ)所得分數的數學期望(用小數表示,精確到0.01k^s*5#u)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知極點與直角坐標系的原點重合,極軸與x軸的正半軸重合,圓C的極坐標方程是ρ=asinθ,直線l的參數方程是 (t為參數)
(1)若a=2,直線l與x軸的交點是M,N是圓C上一動點,求|MN|的最大值;
(2)直線l被圓C截得的弦長等于圓C的半徑的 倍,求a的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了解高中生作文成績與課外閱讀量之間的關系,某研究機構隨機抽取了60名高中生,通過問卷調查,得到以下數據:

0.050

0.025

0.010

0.005

0.001

k

3.841

5.024

6.635

7.879

10.828

由以上數據,計算得到K2的觀測值k≈9.643,根據臨界值表,以下說法正確的是(  )

A. 沒有充足的理由認為課外閱讀量大與作文成績優(yōu)秀有關

B. 0.5%的把握認為課外閱讀量大與作文成績優(yōu)秀有關

C. 99.9%的把握認為課外閱讀量大與作文成績優(yōu)秀有關

D. 99.5%的把握認為課外閱讀量大與作文成績優(yōu)秀有關

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數fx=x2+alnx

1)若a=﹣1,求函數fx)的極值,并指出極大值還是極小值;

2)若a=1,求函數fx)在[1,e]上的最值;

3)若a=1,求證:在區(qū)間[1,+∞)上,函數fx)的圖象在gx=x3的圖象下方.

查看答案和解析>>

同步練習冊答案