已知三棱柱,平面,四邊形為正方形,分別為中點.
(1)求證:∥面
(2)求二面角的余弦值.

(1)見解析(2)

解析試題分析:(1)只要證出,由直線與平面平行的判定定理即可得證
(2)建立空間直角坐標系,利用求二面角的公式求解
試題解析:(1)在、分別是、的中點


又∵平面平面
∥平面
(2)如圖所示,建立空間直角坐標系
,,,
,,
,
平面的一個法向量
設平面的一個法向量為

.

∴二面角的余弦值是.
考點:直線與平面平行的判定定理,在空間直角坐標系中求二面角

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,正方體的邊長為2,,分別為的中點,在五棱錐中,為棱的中點,平面與棱分別交于,.
(1)求證:
(2)若底面,且,求直線與平面所成角的大小,并求線段的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,底面是邊長為2的菱形,且,以為底面分別作相同的正三棱錐,且.

(1)求證:平面;
(2)求平面與平面所成銳角二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在正四棱錐P-ABCD中,PA=AB=,點M,N分別在線段PA和BD上,BN=BD.
(1)若PM=PA,求證:MN⊥AD;
(2)若二面角M-BD-A的大小為,求線段MN的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在三棱錐中,直線平面,且
,又點,,分別是線段,,的中點,且點是線段上的動點.

(1)證明:直線平面;
(2)若,求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,三棱柱中,側棱平面,為等腰直角三角形,,且分別是的中點.

(1)求證:平面;
(2)求銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在邊長為1的等邊三角形ABC中,D,E分別是AB,AC邊上的點,AD=AEFBC的中點,AFDE交于點G,將沿AF折起,得到如圖所示的三棱錐,其中.

(1) 證明://平面;
(2) 證明:平面;
(3)當時,求三棱錐的體積

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知空間三點A(-2,0,2),B(-1,1,2),C(-3,0,4).設ab.
(1)求ab的夾角θ;
(2)若向量kab與ka-2b互相垂直,求k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在三棱柱ABC­A1B1C1中,AA1C1C是邊長為4的正方形,平面ABC⊥平面AA1C1C,AB=3,BC=5.

(1)求證:AA1⊥平面ABC;
(2)求二面角A1­BC1­B1的余弦值;
(3)證明:在線段BC1上存在點D,使得AD⊥A1B,并求的值.

查看答案和解析>>

同步練習冊答案