11.已知z是復(fù)數(shù),i是虛數(shù)單位,若zi=1+i,則z=1-i.

分析 把已知等式變形,然后利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡得答案.

解答 解:由zi=1+i,得$z=\frac{1+i}{i}=\frac{(1+i)(-i)}{-{i}^{2}}=1-i$.
故答案為:1-i.

點(diǎn)評(píng) 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,是基礎(chǔ)的計(jì)算題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知△ABC中,點(diǎn)D在BC邊上,且$\overrightarrow{CD}$=2$\overrightarrow{DB}$,$\overrightarrow{AD}$=r$\overrightarrow{AB}$+s$\overrightarrow{AC}$,則r+s的值( 。
A.$\frac{2}{3}$B.$\frac{4}{3}$C.-3D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在△ABC中,a,b,c分別為三內(nèi)角A,B,C所對(duì)的邊,若B=2A,則b:2a的取值范圍是( 。
A.(-2,2)B.(0,2)C.(-1,1)D.($\frac{1}{2}$,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=$\sqrt{({m^2}-1){x^2}-(1-m)x+1}$的值域?yàn)閇0.+∞),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.有一批貨物需要用汽車從生產(chǎn)商所在城市甲運(yùn)至銷售商所在城市乙,已知從城市甲到城市乙只有兩條公路,且通過這兩條公路所用的時(shí)間互不影響.據(jù)調(diào)查統(tǒng),通過這兩條公路從城市甲到城市乙的200輛汽車所用時(shí)間的頻數(shù)分布如表:
所用的時(shí)間(天數(shù))10111213
通過公路l的頻數(shù)20402020
通過公路2的頻數(shù)10404010
假設(shè)汽車A只能在約定日期(某月某日)的前11天出發(fā),汽車B只能在約定日期的前12天出發(fā)(將頻率視為概率).
(I)為了盡最大可能在各自允許的時(shí)間內(nèi)將貨物運(yùn)往城市乙,估計(jì)汽車A和汽車B應(yīng)如何選擇各自的路徑;
(Ⅱ)若通過公路l、公路2的“一次性費(fèi)用”分別為3.2萬元、1.6萬元(其他費(fèi)用忽略不計(jì)),此項(xiàng)費(fèi)用由生產(chǎn)商承擔(dān).如果生產(chǎn)商恰能在約定日期當(dāng)天將貨物送到,則銷售商一次性支付給生產(chǎn)商40萬元,若在約定日期前送到;每提前一天銷售商將多支付給生產(chǎn)商2萬元;若在約定日期后送到,每遲到一天,生產(chǎn)商將支付給銷售商2萬元.如果汽車A,B按(I)中所選路徑運(yùn)輸貨物,試比較哪輛汽車為生產(chǎn)商獲得的毛利潤更大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在等差數(shù)列{an}中,若a4=1,a7+a9=16,則a12的值為15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,平面上有四個(gè)點(diǎn)A、B、P、Q,其中A、B為定點(diǎn),且AB=$\sqrt{3}$,P、Q為動(dòng)點(diǎn),滿足AP=PQ=QB=1,又△APB和△PQB的面積分別為S和T,則S2+T2的最大值為$\frac{7}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.組數(shù)據(jù)2,x,4,6,10的平均值是5,則此組數(shù)據(jù)的方差是8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)f(x)=$\frac{ln(|x|)}{sinx}$(x≠kπ,k∈Z)的部分圖象可能是( 。
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊答案