以橢圓的中心為頂點,右焦點為焦點的拋物線方程是     .

 

【答案】

【解析】

試題分析:因為橢圓的中心為頂點的右焦點為(2,0),所以 ,故拋物線開口向右,2p=8,則可知所求的拋物線方程為,故答案為。

考點:拋物線標(biāo)準(zhǔn)方程

點評:本題考查拋物線標(biāo)準(zhǔn)方程的求法.在求拋物線的標(biāo)準(zhǔn)方程時,一定要先判斷出開口方向,再設(shè)方程

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知點P是橢圓
x2
169
+
y2
144
=1
上一動點,點F1,F(xiàn)2是橢圓的左右兩焦點.
(1)求該橢圓的長軸長、右準(zhǔn)線方程;
(2)一拋物線以橢圓的中心為頂點、橢圓的右準(zhǔn)線為準(zhǔn)線,求拋物線標(biāo)準(zhǔn)方程;
(3)當(dāng)∠F1PF2=30°時,求△PF1F2的面積;
(4)點Q是圓F2:(x-5)2+y2=25上一動點,求PF1+PQ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知點P是橢圓數(shù)學(xué)公式上一動點,點F1,F(xiàn)2是橢圓的左右兩焦點.
(1)求該橢圓的長軸長、右準(zhǔn)線方程;
(2)一拋物線以橢圓的中心為頂點、橢圓的右準(zhǔn)線為準(zhǔn)線,求拋物線標(biāo)準(zhǔn)方程;
(3)當(dāng)∠F1PF2=30°時,求△PF1F2的面積;
(4)點Q是圓F2:(x-5)2+y2=25上一動點,求PF1+PQ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省寧波市海曙區(qū)效實中學(xué)高二(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

以橢圓的中心為頂點,右焦點為焦點的拋物線方程是   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年湖北省荊州中學(xué)高二(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

以橢圓的中心為頂點,左準(zhǔn)線為準(zhǔn)線的拋物線方程是   

查看答案和解析>>

同步練習(xí)冊答案