已知圓x2+y2=4,求被此圓內(nèi)一點(diǎn)A(1,1)平分的弦所在的直線方程.
考點(diǎn):直線與圓相交的性質(zhì)
專題:直線與圓
分析:由已知得被圓x2+y2=4內(nèi)一點(diǎn)A(1,1)平分的弦所在的直線方程的斜率為-1,由此能求出該直線方程.
解答: 解:由已知得:
被圓x2+y2=4內(nèi)一點(diǎn)A(1,1)平分的弦所在的直線方程的斜率為:
k=-
1
1-0
1-0
=-1,
∴該直線方程為:
y-1=-(x-1),
整理,得:x+y-2=0.
點(diǎn)評(píng):本題考查直線方程的求法,是基礎(chǔ)題,解題時(shí)要注意直線與圓的位置關(guān)系的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=
sinx
sinx+cosx
在點(diǎn)M(
π
4
,0)處的切線斜率為( 。
A、
1
2
B、-
1
2
C、-
2
2
D、
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙兩人各進(jìn)行3次射擊,甲每次擊中目標(biāo)的概率為
1
2
,乙每次擊中目標(biāo)的概率為
2
3
.記甲擊中目標(biāo)的次數(shù)為X,乙擊中目標(biāo)的次數(shù)為Y.
(1)求X的分布列;
(2)求X和Y的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足an=n2-5n-6,n∈N*
(1)數(shù)列中有哪些項(xiàng)是負(fù)數(shù)?
(2)當(dāng)n為何值時(shí),an取得最小值?并求出此最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}是等差數(shù)列,其中a1=25,a4=16
(1)求數(shù)列前n項(xiàng)和Sn的最大值及相應(yīng)的n;
(2)求|a1|+|a3|+|a5|+…+|a19|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(3x-1)=
5-9x
12x-3
,求y=f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={1,x,y},B{1,2x,x2},是否存在實(shí)數(shù)x和y,使得A=B.若存在,求出x與y的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C的方程:x2+y2-2x+4y+k=0
(1)若方程表示圓,求k的取值范圍;
(2)當(dāng)k=-4時(shí),是否存在斜率為1的直線m,使m被圓C截得的弦為AB,且以AB為直徑的圓過原點(diǎn).若存在,求出直線m的方程; 若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩點(diǎn)A(-1,2),B(m,3).
(1)求直線AB的方程;
(2)已知實(shí)數(shù)m∈[-
3
3
-1,
3
-1],求直線AB的傾斜角α的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案