4.若函數(shù)f(x)=$\frac{ax-1}{x-a}$在(-∞,-1)上是增函數(shù),則a的取值范圍是a<-1.

分析 求出函數(shù)的導數(shù),根據(jù)函數(shù)的單調(diào)性得到關于a的不等式組,解出即可.

解答 解:函數(shù)f(x)=$\frac{ax-1}{x-a}$,
f′(x)=$\frac{1{-a}^{2}}{{(x-a)}^{2}}$,
若f(x)在(-∞,-1)遞增,
則$\left\{\begin{array}{l}{1{-a}^{2}<0}\\{a<-1}\end{array}\right.$,解得:a<-1,
故答案為:a<-1.

點評 本題考查了函數(shù)的單調(diào)性問題,考查導數(shù)的應用,是一道基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

14.設函數(shù)f(x)對任意實數(shù)x滿足f(x)=-f(x+1),且當0≤x≤1時,f(x)=x(1-x),若關于x的方程f(x)=kx有3個不同的實數(shù)根,則k的取值范圍是(5-2$\sqrt{6}$,1)∪{2$\sqrt{2}-3$}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=xe2x-lnx-ax.
(1)當a=0時,求函數(shù)f(x)在[$\frac{1}{2}$,1]上的最小值;
(2)若?x>0,不等式f(x)≥1恒成立,求a的取值范圍;
(3)若?x>0,不等式f($\frac{1}{x}$)-1≥$\frac{1}{x}$e${\;}^{\frac{2}{x}}$+$\frac{\frac{1}{e-1}+\frac{1}{x}}{{e}^{\frac{x}{e}}}$恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知凸n邊形的內(nèi)角和為f(n),則凸n+1邊形的內(nèi)角和f(n+1)=f(n)+180°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.直線x+$\sqrt{2}$y-1=0的斜率是(  )
A.$\sqrt{2}$B.-$\sqrt{2}$C.$\frac{\sqrt{2}}{2}$D.-$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)f(x)=ln(1+x)-x+$\frac{1}{2}$kx2
(1)當k=2時,求曲線f(x)在點(1,f(1))處切線方程;
(2)討論f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.如圖,在邊長為4的等邊三角形ABC中,點D,E,F(xiàn)分別是邊AB,AC,BC的中點,DC∩EF=O,沿EF將△CEF翻折到△PEF,連接PA,PB,PD,得到如圖的四棱錐P-ABFE,且PB=$\sqrt{10}$.
(1)求證:AB⊥平面POD;
(2)求四棱錐P-ABFE的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)y=x+$\frac{t}{x}$有如下性質(zhì):如果常數(shù)t>0,那么該函數(shù)在(0,$\sqrt{t}$]上是減函數(shù),在[$\sqrt{t}$,+∞)上是增函數(shù).
(1)已知函數(shù)f(x)=x+$\frac{4}{x}$,x∈[1,3],利用上述性質(zhì),求函數(shù)f(x)的單調(diào)區(qū)間和值域;
(2)已知函數(shù)g(x)=$\frac{4{x}^{2}-12x-3}{2x+1}$和函數(shù)h(x)=-x-2a,若對任意x1∈[0,1],總存在x2∈[0,1],使得h(x2)=g(x1)成立,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.如圖所示,在四面體ABCD中,AD=1,CD=3,AC=2$\sqrt{3}$,cosB=$\frac{{\sqrt{3}}}{3}$.
(1)求△ACD的面積;
(2)若BC=2$\sqrt{3}$,求AB的長.

查看答案和解析>>

同步練習冊答案