A. | 3 | B. | 4 | C. | 5 | D. | 6 |
分析 an=$\frac{4}{11-2n}$,an+1<an,$\frac{4}{11-2(n+1)}$<$\frac{4}{11-2n}$,化為:$\frac{1}{9-2n}$<$\frac{1}{11-2n}$.對n分類討論即可得出.
解答 解:an=$\frac{4}{11-2n}$,an+1<an,
∴$\frac{4}{11-2(n+1)}$<$\frac{4}{11-2n}$,化為:$\frac{1}{9-2n}$<$\frac{1}{11-2n}$.
由9-2n>0,11-2n>0,11-2n<9-2n,解得n∈∅.
由9-2n<0,11-2n>0,解得$\frac{9}{2}<n<\frac{11}{2}$,取n=5.
由9-2n<0,11-2n<0,11-2n<9-2n,解得n∈∅.
因此滿足an+1<an的n的最大值為5.
故選:C.
點評 本題考查了數(shù)列通項公式、分類討論方法、不等式的解法,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{3}{4}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | $\frac{1}{3}$ | C. | -$\frac{1}{3}$ | D. | -$\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=3x+3 | B. | y=$\frac{x}{3}$+3 | C. | y=-$\frac{x}{3}$-$\frac{1}{3}$ | D. | y=-3x-3 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com