14.過(guò)曲線y=x3+1上一點(diǎn)(-1,0),且與曲線在該點(diǎn)處的切線垂直的直線方程是( 。
A.y=3x+3B.y=$\frac{x}{3}$+3C.y=-$\frac{x}{3}$-$\frac{1}{3}$D.y=-3x-3

分析 求出原函數(shù)的導(dǎo)函數(shù),得到函數(shù)在x=-1處的導(dǎo)數(shù)值,得到與該點(diǎn)處的切線垂直的直線的斜率,然后由直線方程的點(diǎn)斜式得答案.

解答 解:由線y=x3+1,得y′=3x2,
∴y′|x=-1=3,
則過(guò)曲線y=x3+1上一點(diǎn)(-1,0)且與該點(diǎn)處的切線垂直的直線的斜率為$-\frac{1}{3}$,
∴直線方程為y-0=$-\frac{1}{3}$(x+1),
即y=-$\frac{x}{3}$-$\frac{1}{3}$.
故選:C.

點(diǎn)評(píng) 本題考查了利用導(dǎo)數(shù)研究過(guò)曲線上某點(diǎn)處的切線方程,過(guò)曲線上某點(diǎn)處的切線的斜率,就是函數(shù)在該點(diǎn)處的導(dǎo)數(shù)值,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.曲線$y=\frac{sinx}{x}$在點(diǎn)M(π,0)處的切線方程為( 。
A.y=$\frac{1}{π}x-1$B.y=$-\frac{1}{π}x+1$C.y=$\frac{1}{π}x+1$D.y=$-\frac{1}{π}x-1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知數(shù)列{an},滿足a1=2,an=3an-1+4(n≥2),則an=4×3n-1-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知數(shù)列{an}的通項(xiàng)為an=$\frac{4}{11-2n}$,則滿足an+1<an的n的最大值為( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.(1)求定積分${∫}_{0}^{1}$(2x+ex)dx的值;
(2)若關(guān)于x的不等式${x^2}+\frac{1}{x}-m≥0$對(duì)任意x$∈({-∞,-\frac{1}{2}}]$恒成立,求的m取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.在直角坐標(biāo)系xOy中,圓C的參數(shù)方程為$\left\{\begin{array}{l}x=3+2cosθ\\ y=-4+2sinθ\end{array}\right.$(θ為參數(shù)).
(1)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,求圓C的極坐標(biāo)方程;
(2)已知A(2,0),B(0,2),圓C上任意一點(diǎn)M(x,y),求△ABM面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,且滿足S17>0,S18<0,則$\frac{{S}_{1}}{{a}_{1}}$,$\frac{{S}_{2}}{{a}_{2}}$,…,$\frac{{S}_{15}}{{a}_{15}}$中最大的項(xiàng)為( 。
A.$\frac{{S}_{7}}{{a}_{7}}$B.$\frac{{S}_{8}}{{a}_{8}}$C.$\frac{{S}_{9}}{{a}_{9}}$D.$\frac{{S}_{10}}{{a}_{10}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.某班有男生30人,女生20人,按分層抽樣方法從班級(jí)中選出5人負(fù)責(zé)校園開(kāi)放日的接待工作.現(xiàn)從這5人中隨機(jī)選取2人,至少有1名男生的概率是(  )
A.$\frac{1}{10}$B.$\frac{3}{10}$C.$\frac{7}{10}$D.$\frac{9}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.在復(fù)平面內(nèi),復(fù)數(shù)$z=\frac{2i}{1+i}$(i為虛數(shù)單位)的共軛復(fù)數(shù)$\bar z$對(duì)應(yīng)點(diǎn)為A,點(diǎn)A關(guān)于原點(diǎn)O的對(duì)稱點(diǎn)為B,求:
(Ⅰ)點(diǎn)A所在的象限;
(Ⅱ)向量$\overrightarrow{OB}$對(duì)應(yīng)的復(fù)數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案