某產(chǎn)品按質(zhì)量分為10個檔次,生產(chǎn)第一檔(即最低檔次)的利潤是每件8元,每提高一個檔次,利潤每件增加2元,但在相同的時間內(nèi)產(chǎn)量減少3件.在相同的時間內(nèi),最低檔的產(chǎn)品可生產(chǎn)60件.問在相同的時間內(nèi),生產(chǎn)第幾檔次的產(chǎn)品的總利潤最大?有多少元?

分析:在一定條件下,“利潤最大”“用料最省”“面積最大”“效率最高”“強度最大”等問題,在生產(chǎn)、生活中經(jīng)常用到,在數(shù)學上這類問題往往歸結(jié)為求函數(shù)的最值問題.除了常見的求最值的方法外,還可用求導法求函數(shù)的最值.但無論采取何種方法都必須在函數(shù)的定義域內(nèi)進行.

解法一 設(shè)相同的時間內(nèi),生產(chǎn)第x(x∈N*,1≤x≤10)檔次的產(chǎn)品利潤y最大.        

依題意,得y=[8+2(x-1)][60-3(x-1)]          

=-6x2+108x+378

=-6(x-9)2+864(1≤x≤10),                     

顯然,當x=9時,ymax=864(元),

即在相同的時間內(nèi),生產(chǎn)第9檔次的產(chǎn)品的總利潤最大,最大利潤為864元.   

解法二 由上面解法得到y=-6x2+108x+378.

求導數(shù),得y′=-12x+108.

y′=-12x+108=0,

解得x=9.因為x=9∈[1,10],y只有一個極值點,所以它是最值點,即在相同的時間內(nèi),生產(chǎn)第9檔次的產(chǎn)品利潤最大,最大利潤為864元.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

某產(chǎn)品按質(zhì)量分為10個檔次,生產(chǎn)第一檔(即最低檔次)的利潤是每件8元,每提高一個檔次,利潤每件增加2元,但每提高一個檔次,在相同的時間內(nèi),產(chǎn)量減少3件,如果在規(guī)定的時間內(nèi),最低檔次的產(chǎn)品可生產(chǎn)60件,則在同樣的時間內(nèi),生產(chǎn)哪一檔次的產(chǎn)品的總利潤最大?(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某產(chǎn)品按質(zhì)量分為10個檔次,生產(chǎn)第一檔(即最低檔次)的利潤是每件8元,每提高一個檔次,利潤每件增加2元,但每提高一個檔次,在相同的時間內(nèi),產(chǎn)量減少3件.如果在規(guī)定的時間內(nèi),最低檔次的產(chǎn)品可生產(chǎn)60件.
( I)請寫出相同時間內(nèi)產(chǎn)品的總利潤y與檔次x之間的函數(shù)關(guān)系式,并寫出x的定義域.
( II)在同樣的時間內(nèi),生產(chǎn)哪一檔次產(chǎn)品的總利潤最大?并求出最大利潤.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

 某產(chǎn)品按質(zhì)量分為10個檔次,生產(chǎn)第一檔(即最低檔次)的利潤是每件8元,每提高一個檔次,利潤每件增加2元,但在相同的時間內(nèi)產(chǎn)量減少3件.在相同的時間內(nèi),最低檔的產(chǎn)品可生產(chǎn)60件.問在相同的時間內(nèi),生產(chǎn)第幾檔次的產(chǎn)品的總利潤最大?有多少元?

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012年山東省高一上學期期中考試數(shù)學 題型:解答題

(本小題滿分12分)某產(chǎn)品按質(zhì)量分為10個檔次,生產(chǎn)第一檔(即最低檔次)的利潤是每件8元,每提高一個檔次,利潤每件增加2元,但每提高一個檔次,在相同的時間內(nèi),產(chǎn)量減少3件。如果在規(guī)定的時間內(nèi),最低檔次的產(chǎn)品可生產(chǎn)60件

(I)請寫出相同時間內(nèi)產(chǎn)品的總利潤與檔次之間的函數(shù)關(guān)系式,并寫出的定義域

(II)在同樣的時間內(nèi),生產(chǎn)哪一檔次產(chǎn)品的總利潤最大?并求出最大利潤.

 

查看答案和解析>>

同步練習冊答案