分析 過C作CE∥AB,使CE=AB,則VD-ABC=VD-BCE=VB-CDE.
解答 解:在β內(nèi)過C作CE∥AB,使得CE=AB,
則四邊形CEBA是平行四邊形,
∵兩平行平面α、β間的距離為2$\sqrt{3}$,
∴B到平面CDE的距離h=2$\sqrt{3}$.
∴VD-ABC=VD-BCE=VB-CDE=$\frac{1}{3}{S}_{△CDE}•h$=$\frac{1}{3}×\frac{1}{2}×3×4×sin60°×2\sqrt{3}$=6.
故答案為:6.
點評 本題考查了棱錐的體積計算,將棱錐的底面轉(zhuǎn)化到平面β內(nèi)是關(guān)鍵,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (0,π) | B. | $({0,\frac{π}{4}})$ | C. | $[{0,\frac{π}{4}})∪({\frac{3}{4}π,π})$ | D. | $[{0,\frac{π}{4}})∪({\frac{π}{2},π})$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -4 | B. | 16 | C. | -4或16 | D. | 16或18 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3$\overrightarrow{AB}$ | B. | $\overrightarrow{BA}$ | C. | $\overrightarrow{AB}$ | D. | $\overrightarrow{CA}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com