分析 (1)由題意可得a,c的方程組,求解可得a,c的值,結(jié)合隱含條件求得b,則橢圓方程可求;
(2)由已知可得直線l的方程,與橢圓方程聯(lián)立,可得B的坐標(biāo),由|AB|=$\sqrt{2}|{x}_{A}-{x}_{B}|$求得答案.
解答 解:(1)設(shè)橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的半焦距為c,
由題意可得:$\left\{\begin{array}{l}{a+c=\sqrt{3}+\sqrt{2}}\\{a-c=\sqrt{3}-\sqrt{2}}\end{array}\right.$,解得a=$\sqrt{3}$,c=$\sqrt{2}$.
∴b2=a2-c2=1.
則橢圓C的方程為$\frac{{x}^{2}}{3}+{y}^{2}=1$;
(2)如圖,橢圓C的上頂點(diǎn)A(0,1),
則直線l的方程y=x+1.
聯(lián)立$\left\{\begin{array}{l}{y=x+1}\\{\frac{{x}^{2}}{3}+{y}^{2}=1}\end{array}\right.$,得2x2+3x=0.
解得:${x}_{A}=0,{x}_{B}=-\frac{3}{2}$.
∴|AB|=$\sqrt{2}|{x}_{A}-{x}_{B}|=\frac{3\sqrt{2}}{2}$.
點(diǎn)評(píng) 本題考查橢圓的簡(jiǎn)單性質(zhì),考查直線與橢圓位置關(guān)系的應(yīng)用,明確橢圓上的點(diǎn)中,左頂點(diǎn)到右焦點(diǎn)的距離最大,右頂點(diǎn)到右焦點(diǎn)的距離最小是關(guān)鍵,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com