已知定義在R上的偶函數(shù)f(x)滿足:?x∈R恒有f(x+2)=f(x)-f(1).且當(dāng)x∈[2,3]時,f(x)=-2(x-3)2.若函數(shù)y=f(x)-loga(x+1)在(0,+∞)上至少有三個零點(diǎn),則實(shí)數(shù)a的取值范圍為(  )
A.(0,B.(0,C.(1,D.(1,
B

試題分析: 令x=-3,則f(-1)=f(-3)-f(1),因?yàn)閒(x)是偶函數(shù),所以f(1)=0,即f(x+2)=f(x),故函數(shù)f(x)是以2為周期的周期性函數(shù),做出函數(shù)f(x)的圖象,如圖所示,要使y=f(x)-loga(x+1)在(0,+∞)上至少有三個零點(diǎn),則,解得0<a<.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知m為常數(shù),函數(shù)為奇函數(shù).
(1)求m的值;
(2)若,試判斷的單調(diào)性(不需證明);
(3)若,存在,使,求實(shí)數(shù)k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(Ⅰ)求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)當(dāng)時,在曲線上是否存在兩點(diǎn),使得曲線在兩點(diǎn)處的切線均與直線交于同一點(diǎn)?若存在,求出交點(diǎn)縱坐標(biāo)的取值范圍;若不存在,請說明理由;
(Ⅲ)若在區(qū)間存在最大值,試構(gòu)造一個函數(shù),使得同時滿足以下三個條件:①定義域,且;②當(dāng)時,;③在中使取得最大值時的值,從小到大組成等差數(shù)列.(只要寫出函數(shù)即可)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)函數(shù)是定義在R上的奇函數(shù),且當(dāng)x0時,單調(diào)遞減,若數(shù)列是等差數(shù)列,且,則的值                          (  )
A.恒為負(fù)數(shù)B.恒為0 C.恒為正數(shù)D.可正可負(fù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)滿足,且時,,則的圖象的交點(diǎn)個數(shù)為____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù),下列結(jié)論中錯誤的是(  )
A.R,
B.函數(shù)的圖像是中心對稱圖形
C.若的極小值點(diǎn),則在區(qū)間上單調(diào)遞減
D.若的極值點(diǎn),則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

對于函數(shù),如果存在區(qū)間,同時滿足下列條件:①內(nèi)是單調(diào)的;②當(dāng)定義域是時,的值域也是,則稱是該函數(shù)的“和諧區(qū)間”.若函數(shù)存在“和諧區(qū)間”,則的取值范圍是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)f(x)=|log3x|在區(qū)間[a,b]上的值域?yàn)閇0,1],則b-a的最小值為(    )
A.2 B.C.D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)f(x)=log5(2x+1)的單調(diào)增區(qū)間是____________.

查看答案和解析>>

同步練習(xí)冊答案