【題目】已知向量 =(﹣2,1), =(3,﹣4).
(1)求( + )(2 ﹣ )的值;
(2)求向量 與 + 的夾角.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】各項均為正數(shù)的等差數(shù)列{an}前n項和為Sn , 首項a1=3,數(shù)列{bn} 為等比數(shù)列,首項b1=1,且b2S2=64,b3S3=960.
(1)求an和bn;
(2)設(shè)f(n)= (n∈N*),求f(n)最大值及相應(yīng)的n的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】是否存在同時滿足下列兩條件的直線l:l與拋物線y2=8x有兩個不同的交點A和B;線段AB被直線l1:x+5y﹣5=0垂直平分.若不存在,說明理由,若存在,求出直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】兩千多年前,古希臘畢達(dá)哥拉斯學(xué)派的數(shù)學(xué)家曾經(jīng)在沙灘上研究數(shù)學(xué)問題.他們在沙灘上畫點或用小石子表示數(shù),按照點或小石子能排列的形狀對數(shù)進(jìn)行分類.如下圖中實心點的個數(shù)5,9,14,20,…為梯形數(shù).根據(jù)圖形的構(gòu)成,記此數(shù)列的第2013項為a2013 , 則a2013﹣5=( )
A.2019×2013
B.2019×2012
C.1006×2013
D.2019×1006
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=4cosxsin(x+ )+a的最大值為2.
(1)求a的值及f(x)的最小正周期;
(2)求f(x)的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司計劃種植A,B兩種中藥材,該公司最多能承包50畝的土地,可使用的周轉(zhuǎn)資金不超過54萬元,假設(shè)藥材A售價為0.55萬元/噸,產(chǎn)量為4噸/畝,種植成本1.2萬元/畝;藥材B售價為0.3萬元/噸,產(chǎn)量為6噸/畝,種植成本0.9萬元/畝時公司的總利潤最大,則A,B兩種中藥材的種植面積應(yīng)各為多少畝,最大利潤為多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)= (m∈R,x>m).
(1)若f(x)+m≥0恒成立,求m的取值范圍;
(2)若f(x)的最小值為6,求m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國是世界上嚴(yán)重缺水的國家之一,城市缺水問題較為突出.某市為了節(jié)約生活用水,計劃在本市試行居民生活用水定額管理(即確定一個居民月均用水量標(biāo)準(zhǔn)03.5,用水量不超過a的部分按照平價收費,超過a的部分按照議價收費).為了較為合理地確定出這個標(biāo)準(zhǔn),通過抽樣獲得了 100位居民某年的月均用水量(單位:t),制作了頻率分布直方圖.
(1)由于某種原因頻率分布直方圖部分?jǐn)?shù)據(jù)丟失,請在圖中將其補充完整;
(2)用樣本估計總體,如果希望80%的居民每月的用水量不超出標(biāo)準(zhǔn)03.5,則月均用水量的最低標(biāo)準(zhǔn)定為多少噸,請說明理由;
(3)從頻率分布直方圖中估計該100位居民月均用水量的平均數(shù)(同一組中的數(shù)據(jù)用該區(qū)間的中點值代表).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為正方形,PD⊥平面ABCD,PD∥QA,QA=AB= PD. (Ⅰ)證明:平面PQC⊥平面DCQ
(Ⅱ)求二面角Q﹣BP﹣C的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com