分析 (1)由數列的前n項和推陳出新導出an+1an=2,從而數列{an}是首項是1,公比為2的等差數列,由此能求出an.
(2)推導出bn-bn-1=2n-1,由此利用累加法能求出bn.
(2)由cn=an•log2(bn+1)=2n−1•log22n=n•2n-1,利用錯位相減法能求出數列{cn}的前n項和Tn.
解答 解:(1)∵數列的前n項和Sn=an+1-1,a1=1,(n∈N*).
∴an=Sn-Sn-1=(an+1-1)-(an-1),
2an=an+1,
∴an+1an=2,
∴數列{an}是首項是1,公比為2的等差數列,
∴an=1×2n-1=2n-1.
(2)∵數列{bn}滿足b1=1,bn+1=bn+an+1(n∈N*),
bn-bn-1=2n-1,
∴bn=b1+b2+b3+…+bn
=1+2+22+…+2n-1
=1−2n1−2=2n-1.
(2)∵cn=an•log2(bn+1)=2n−1•log22n=n•2n-1,
∴數列{cn}的前n項和:
Tn=1×20+2×2+3×22+…+n×2n-1,①
2Tn=1×2+2×22+3×33+…+n×2n,②
①-②,得:-Tn=1+2+22+…+2n-1-n×2n
=1−2n1−2-n×2n-1
=2n-1-n×2n.,
∴Tn=(n-1)×2n+1.
點評 本題考查數列的通項公式的求法,考查數列的前n項的求法,是基礎題,解題時要認真審題,注意等差數列\(zhòng)錯位相減法的性質的合理運用.
科目:高中數學 來源: 題型:選擇題
A. | 第一象限角或第二象限角 | B. | 第二象限角或第四象限角 | ||
C. | 第三象限角 | D. | 第四象限角 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
ωx+φ | 0 | \frac{π}{2} | π | \frac{3π}{2} | 2π |
x | \frac{π}{3} | \frac{5π}{6} | |||
f(x)=Asin(ωx+φ), | 0 | 5 | -5 | 0 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | y=-\frac{1}{32} | B. | y=-2 | C. | x=-2 | D. | x=-\frac{1}{32} |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com