8.已知F1,F(xiàn)2是雙曲線C:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的兩個焦點,|F1F2|=2$\sqrt{3}$,離心率為$\frac{{\sqrt{6}}}{2}$,M(x0,y0)是雙曲線C上的一點,若$\overrightarrow{M{F_1}}$•$\overrightarrow{M{F_2}}$<0,則y0的取值范圍是( 。
A.$({-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}})$B.$({-\frac{{\sqrt{3}}}{6},\frac{{\sqrt{3}}}{6}})$C.$({-\frac{{2\sqrt{2}}}{3},\frac{{2\sqrt{2}}}{3}})$D.$({-\frac{{2\sqrt{3}}}{3},\frac{{2\sqrt{3}}}{3}})$

分析 先求出雙曲線的方程,再結(jié)合M(x0,y0)是雙曲線C上的一點,若•$\overrightarrow{M{F_2}}$<0,即可求出y0的取值范圍.

解答 解:由題意,c=$\sqrt{3}$,a=$\sqrt{2}$,b=1,∴雙曲線方程為$\frac{{x}^{2}}{2}-{y}^{2}$=1.
∵$\overrightarrow{M{F_1}}$•$\overrightarrow{M{F_2}}$<0,
∴${{x}_{0}}^{2}+{{y}_{0}}^{2}-3<0$,
∵${{x}_{0}}^{2}$=2+$2{{y}_{0}}^{2}$,
∴$3{{y}_{0}}^{2}$-1<0,
∴-$\frac{\sqrt{3}}{3}<{y}_{0}<\frac{\sqrt{3}}{3}$,
故選:A.

點評 本題考查雙曲線的方程與性質(zhì),考查向量知識的運(yùn)用,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若函數(shù)f(x)=ax2-(2a+1)x+a+1對于a∈[-1,1]時恒有f(x)<0,則實數(shù)x的取值范圍是(  )
A.(1,2)B.(-∞,1)∪(2,+∞)C.(0,1)D.(-∞,0)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知集合A={x|x2-9x-10=0},B={x|mx+1=0},且A∪B=A,則m的取值集合是$\{0,1,-\frac{1}{10}\}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在平面直角坐標(biāo)系xOy中,定點A(4,4),P是函數(shù)y=$\frac{1}{x}$(x>0)圖象上一動點,則PA的最小值為$\sqrt{14}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知集合A={-1}且A∪B={-1,3},請寫出所有滿足條件B的集合{3}或{-1,3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.?dāng)?shù)列{an}為等比數(shù)列,則下列結(jié)論中不正確的是( 。
A.$\{{a_n}^2\}$是等比數(shù)列B.{an•an+1}是等比數(shù)列
C.$\{\frac{1}{a_n}\}$是等比數(shù)列D.{lgan}是等差數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知曲線f(x)=3mx+sinx上存在互相垂直的兩條切線,則實數(shù)m的值為( 。
A.$\frac{3}{10}$B.$-\frac{2}{7}$C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知x2+y2=10,則3x+4y的最大值是5$\sqrt{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)a,b是兩條直線,α,β,γ是三個平面,則下列推導(dǎo)錯誤的是( 。
A.a∥b,b?β,a?β⇒a∥βB.a∥α,a⊥β⇒β⊥α
C.α∥β,α∩γ=a,β∩γ=b⇒a∥bD.a?α,b?α,a∥β,b∥β⇒α∥β

查看答案和解析>>

同步練習(xí)冊答案