若等比數(shù)列{an},an>0,公比q≠1,且2a2,a3,a1成等差數(shù)列,則
a5+a6a3+a4
的值為
 
分析:先利用2a2,a3,a1成等差數(shù)列,求出公比q,再對(duì)
a5+a6
a3+a4
轉(zhuǎn)化后求出q2即可.
解答:解:因?yàn)?a2,a3,a1成等差數(shù)列,所以2a1•q2=a1+2a1•q?2q2-2q-1=0.?q=
1+
3
2
.(負(fù)值舍去)
又因?yàn)?span id="xcuykyl" class="MathJye" mathtag="math" style="whiteSpace:nowrap;wordSpacing:normal;wordWrap:normal">
a5+a6
a3+a4
=q2=
2+
3
2
=1+
3
2

故答案為:1+
3
2
點(diǎn)評(píng):本小題主要考查等差數(shù)列、等比數(shù)列等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查歸化與轉(zhuǎn)化思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若等比數(shù)列{an}的首項(xiàng)為
2
3
,且a4=
4
1
(1+2x)dx,則公比等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若等比數(shù)列{an}的首項(xiàng)為1,前n項(xiàng)和為
40
27
,公比為
1
3
,則這個(gè)數(shù)列的項(xiàng)數(shù)為( �。�

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若等比數(shù)列{an}的前n項(xiàng)和為Sn,a3=
3
2
,S3=
9
2
,則公比q=
1或-
1
2
1或-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•楊浦區(qū)一模)若等比數(shù)列{an}前n項(xiàng)和為Sn=2n+a,則復(fù)數(shù)z=
i
a+i
在復(fù)平面上對(duì)應(yīng)的點(diǎn)位于( �。�

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知數(shù)列{an}為等比數(shù)列,且a5=8,a7=2,該數(shù)列的各項(xiàng)都為正數(shù),求an;
(2)若等比數(shù)列{an}的首項(xiàng)a1=
9
8
,末項(xiàng)an=
1
3
,公比q=
2
3
,求項(xiàng)數(shù)n.

查看答案和解析>>

同步練習(xí)冊(cè)答案