已知,證明:不等式對任何正整數(shù)都成立.
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)數(shù)列的前項和為,已知,且
,
其中為常數(shù).
(Ⅰ)求與的值;
(Ⅱ)證明:數(shù)列為等差數(shù)列;
(Ⅲ)證明:不等式對任何正整數(shù)都成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆浙江省高三上學(xué)期入學(xué)摸底理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)
(Ⅰ)若對任意,使得恒成立,求實數(shù)的取值范圍;
(Ⅱ)證明:對,不等式成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆四川省高一下學(xué)期期中理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知正項數(shù)列的前n項和滿足:,
(1)求數(shù)列的通項和前n項和;
(2)求數(shù)列的前n項和;
(3)證明:不等式 對任意的,都成立.
【解析】第一問中,由于所以
兩式作差,然后得到
從而得到結(jié)論
第二問中,利用裂項求和的思想得到結(jié)論。
第三問中,
又
結(jié)合放縮法得到。
解:(1)∵ ∴
∴
∴ ∴ ………2分
又∵正項數(shù)列,∴ ∴
又n=1時,
∴ ∴數(shù)列是以1為首項,2為公差的等差數(shù)列……………3分
∴ …………………4分
∴ …………………5分
(2) …………………6分
∴
…………………9分
(3)
…………………12分
又
,
∴不等式 對任意的,都成立.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com